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Executive Control of Visual Attention in Dual-Task Situations
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A theory of executive control is presented that proposes that executive processes control subordinate
processes by manipulating their parameters, reconfiguring them to respond in accord with the current task
set. It adopts C. Bundesen’s (1990) theory of visual attention (TVA) and R. M. Nosofsky and T. J.
Palmeri’s (1997) exemplar-based random walk (EBRW) as the theory of subordinate processes. It
assumes that a task set is a set of TVA and EBRW parameters sufficient to perform a task and that set
switching involves changing those parameters. The theory solves 2 computational problems that emerge
in dual-task situations: the binding problem and the serial order problem. It can perform dual tasks in
series or in parallel but prefers the serial strategy because it is faster and it solves the binding problem
naturally. The theory accounts for concurrence cost, set-switching cost, crosstalk between tasks, and the

modulation of crosstalk by task set.

We live in a world of blooming, buzzing confusion. Many
courses of action are open to us every second,.and we often try to
follow several at one time. Our struggles in coping with multiple
task demands are part of the fabric of modern life, the stuff that
novels are made of. Our struggles in muitiple-task environ-
ments have been interesting to psychologists for a century (e.g.,
Solomons & Stein, 1896; Welch, 1898), who understood them as
phenomena of attention (e.g., James, 1890). Researchers devel-
oped experimental paradigms that abstracted and isolated different
aspects of the bloom and the buzz, and the literature proliferated
(Lovie, 1983). The first systematic theories of attention were
developed in the 1950s and 1960s (e.g., Broadbent, 1958, 1971;
Kahneman, 1973; Neisser, 1967). They were integrative, trying to
model the whole set of attentional phenomena in a single theory
based on a few simple principles, such as central bottlenecks
(Broadbent, 1958) or limited processing capacity (Kahneman,
1973; Posner & Boies, 1971). The mechanism that accounted for
selection between tasks was also responsible for selection within
tasks.

The theoretical focus has shifted in the last 20 years, from
general to specific, from integrative to analytic. Researchers
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adopted a divide-and-conquer strategy, addressing the details of
individual phenomena rather than the commonalities among them.
Some researchers have studied selective attention within tasks,
asking how people choose among multiple objects of perception or
regions of space (e.g., Bundesen, 1990; Duncan, 1984; Logan,
1996; Treisman & Gelade, 1980; Wolfe, 1994). Others have stud-
ied selection between tasks, asking how people perform several
tasks at once (e.g., Jolicoeur, 1998; Pashler, 1984; Pashler &
Johnston, 1989). These were considered to be different phenomena
of attention, explained by different theoretical mechanisms
(Johnston, McCann, & Remington, 1995; Pashler, 1991). This
research has revealed many important details about individual
phenomena and has created several specific theories to account for
them.

The success of the divide-and-conquer strategy depends on an
implicit assumption that the parts can be fit together to form a
coherent whole, like the pieces of a jigsaw puzzle. The ultimate
goal of attention research is a single integrative theory that ac-
counts for most of the bloom and the buzz so, eventually, the
specific theories must generalize beyond the phenomena they were
developed to account for. A theory of one phenomenon shouid
extend to another phenomenon, or it should interface naturally
with a theory of the other phenomenon to form a new theory that
accounts for both.

One purpose of the present article is to test the assumption
that the parts can be fit together by extending one of the most
powerful current theories of selection within tasks, Bundesen’s
(1990) theory of visual attention (TVA), to deal with selection
between tasks in dual-task situations. TVA was developed to
account for a wide variety of single-task situations that require
selection within tasks, including whole and partial report
(Bundesen, 1987, 1990), feature and conjunction search
(Bundesen, 1990; Logan, 1996), item identification (Bundesen,
1990), and flanker tasks (Logan, 1996). Current single-task
versions of TVA already have most of the machinery required
to run TVA in dual-task situations. We extend TVA to dual-task
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situations by running it twice, once for each task. In order to
make it run twice, we had to specify two new (executive)
processes that control TVA’s response to multiple stimuli.

The success of the divide-and-conquer strategy depends on a
second implicit assumption that the whole is no more than the sum
of the parts. The individual theories can be fit together to form a
complete account of attentional phenomena with nothing impor-
tant left unexplained. A significant challenge to this assumption
has appeared in the recent interest in executive processing (Logan,
1985; Meyer & Kieras, 1997a, 1997b; Norman & Shallice, 1986).
The requirement to do two things at once (Duncan, 1979) or to
switch from one thing to another (Allport, Styles, & Hsieh, 1994;
Rogers & Monsell, 1995) creates an emergent need to organize and
schedule the elementary, subordinate processes that are recruited
to deal with individual tasks. The whole is more than the sum of
the subordinates. It includes the executive as well.

The second purpose of this article is to test the assumption
that the whole is more than the sum of the parts by proposing
a theory of the executive process that controls TVA. We call our
theory executive control of TVA (ECTVA). It consists of a
subordinate process—TVA-—that can be programmed to carry
out different tasks, and an executive process that programs the
subordinate. Our theory of executive processes is grounded in a
theory of subordinate processes—TVA-—just as theories of
subordinate processes are grounded in theories of stimulus and
response properties (also see Meyer & Kieras, 1997a, 1997b).
Any process, executive or subordinate, can be defined in terms
of the inputs it takes and the outputs it gives. The inputs to
visual perceptual processes are described in terms of optics:
luminances, wavelengths, and so on. The inputs to visual word
recognition processes are described in terms of visual features,
the frequency with which features and feature combinations
appear in print, and so on. A theory of the executive must be
grounded similarly in a theory of the states of a subordinate
process. The idea that an executive programs a subordinate is
rather empty without a theory of the subordinate that says how
it can be programmed. Our theory of the executive is grounded
in the states of TVA. The input to our executive is a state of
TVA, and the output is a change in the state of TVA.

TVA exerts strong constraints over our theorizing about exec-
utive processes, because there are only a few ways to change its
states and control it. TVA has six different kinds of parameters,
three of which are entirely under executive control and one of
which is partially under executive control. ECTVA controls TVA
by manipulating these parameters. In ECTVA, a task set is a set of
TVA parameters that is sufficient to configure TVA to perform a
task. ECTVA adds two more kinds of parameters: one representing
the time required for the executive process to manipulate TVA’s
parameters and one representing the manner in which the execu-
tive process resets the evidence-accumulation process to enable a
response to a second stimulus. The whole is more than the sum of
the parts but not much more.

Qur investigation focuses on a dual-task situation called the
psychological refractory period (PRP) procedure, in which
subjects make discrete responses to punctate stimuli that appear
at precisely controlled intervals (Welford, 1952). We chose this
procedure because it is perhaps the most popular of the current
dual-task procedures (see Pashler, 1994a) and because it is the

focus of an important theoretical controversy over the division
of labor between executive and subordinate processes (Pashler,
1989; Pashler & Johnston, 1989; Van Selst & Jolicoeur, 1997,
vs. Meyer & Kieras, 1997a, 1997b). Our investigation focuses
on three effects that have been interpreted in terms of executive
processing in the dual-task literature: crosstalk, set-switching
cost, and concurrence cost. We report three experiments that
look for these effects in the PRP procedure, and we account for
our findings in terms of our theory. The experiments show that
crosstalk is modulated by task set—it occurs only when the set
is the same for the two tasks—and our theory accounts for that
modulation.

The PRP Procedure
A Brief History

Multiple-task situations can be implemented in many different
ways. Solomons and Stein (1896), for example, had subjects take
dictation while reading prose. Welch (1898) had subjects squeeze
a dynamometer while performing mental arithmetic and other
tasks and measured the relaxation in subjects’ grip when the
mental task got difficult. These tasks had a certain ecological
validity but did not afford much experimental control. The timing
of stimulus events was often under the subject’s control rather than
the experimenter’s. The tasks were continuous and so could be
controlled by discrete executive actions that occurred at unknown
times (e.g., Broadbent, 1982).

The PRP procedure arose from a need to have precise control
over the experimental procedure and over the subject’s perfor-
mance. The PRP procedure achieves these goals by presenting just
two stimuli, S1 and S2, with some controlled interval between
their onsets, called stimulus onset asynchrony (SOA), which
ranges from O to 1,000 ms in most experiments. Subjects respond
separately to each stimulus, performing Task 1 on S1 to produce
response R1 with latency RT1, and Task 2 on S2 to produce R2
with latency RT2. The stimuli are typically presented well above
threshold, so reaction time (RT) is the main dependent variable.
The tasks are well specified, and subjects are instructed to respond
as quickly as possible without making errors, so their performance
is strongly constrained. A schematic version of a typical PRP
experiment is depicted in Figure 1A.

The most basic PRP results are the effects of SOA on RT1 and
RT2, depicted in Figure 1B (for reviews, see Bertelson, 1966;
Kahneman, 1973; Pashler, 1994a; Smith, 1967; Welford, 1952).
Generally, RT1 remains constant over SOA, whereas RT2 is
strongly affected. It is largest when SOA = 0, and it decreases
substantially as SOA increases from 0. Researchers generally
interpret the constancy of RT1 over SOA as evidence that Task 1
was “protected” and the slowing of RT2 at short SOAs as evidence
of dual-task interference. The PRP procedure appears to concen-
trate dual-task interference on RT2. Theories of the PRP address
these effects primarily. The controversy between them concerns
interactions of difficulty factors and SOA within and between
tasks (see McCann & Johnston, 1992; Meyer & Kieras, 1997a,
1997b; Pashler, 1989; Pashler & Johnston, 1989; Schumacher et
al., 1999; Van Selst & Jolicoeur, 1997).

Telford (1931) was the first to coin the term psychological
refractory period. He had subjects perform a simple RT task to
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Figure 1. Example of typical procedure (Panel A) and results (Panel B)

in a psychological refractory period experiment. S1 is the digit 7, which is
the first stimulus; S2 (second stimulus) is the digit 3, which appears below
S1; SOA = stimulus onset asynchrony; RT1 = reaction time for response
S1; RT2 = RT for response to S2.

“sounds” presented with various intervals between them
(500, 1,000, 2,000, and 4,000 ms). He found that subjects were
slowest when the interval was shortest, and he argued that the
response to the first stimulus put the person in a state of psycho-
logical refractoriness, analogous to the refractory state of neurons
after they produce an action potential. Vince (1948) and Welford
(1952) developed procedures more like the current ones. They
used shorter intervals and found more slowing of RT2, which they
interpreted in terms of queuing for access to central processes
rather than refractoriness. Despite the change in interpretation,
Telford’s term persists.

It is possible that the first theory in modern cognitive psychol-
ogy was Welford’s (1952) single-channel theory of the PRP.
Inspired by Craik (1947, 1948) and adopted and expanded by
Broadbent (1957, 1958), it became a general theory of attention
that influenced the first generation of cognitive psychologists and
every one that followed. The core idea was that every deliberate
response to a stimulus passed through a central bottleneck stage
that could deal with only one thing at a time. Around 1970,
capacity or resource theories arose as alternatives to single-
channel theory, and they too addressed the PRP and related para-

digms (Kahneman, 1973; McLeod, 1977; Posner & Boies, 1971).
In the 1980s, resource theory declined (Allport, 1980; Navon,
1984), particularly as an explanation of the PRP (Pashler, 1984,
1994b).

Current Theories of the PRP

Response selection bottleneck. In 1984, Pashler resurrected a
form of single-channel theory, casting it in terms of processing
stages defined theoretically by a simple rational analysis and
empirically by patterns of interaction and additivity among diffi-
culty factors affecting RT (Pashler & Johnston, 1989; Schweickert,
1978; Schweickert & Townsend, 1989; Townsend & Schweickert,
1989). Response selection bottleneck (RSB) theory assumes that
performance on each task is based on a series of processing stages
that extend from stimulus to response. One of the stages is a
bottleneck in the sense that it can do only one thing at a time.
Processing in stages prior to the bottleneck can go on in parallel
with another task, but processing in the bottleneck stage is dedi-
cated to one task at a time. Many experiments converged on the
conclusion that response selection was the locus of the bottleneck,
so the theory came to be known as response selection bottleneck
theory (DeJong, 1993; McCann & Johnston, 1992; Pashler, 1984,
1989, 1991; Pashler & Johnston, 1989; Van Selst & Jolicoeur,
1997; but see Schumacher et al., 1999).

Strategic response deferment. Meyer and Kieras (1997a,
1999) developed an architecture called executive process interac-
tive control that accounts for many executive phenomena in the
attention literature (also see Meyer et al., 1995). In 1997, they
developed the strategic response deferment (SRD) model within
this architecture and applied it to detailed results in the PRP
literature (Meyer & Kieras, 1997a, 1997b). SRD provides precise
quantitative accounts of many PRP phenomena (Meyer & Kieras,
1997b). It differs sharply from RSB in two critical respects. First,
SRD assumes there is no central bottleneck, so RT2 slowing at
short SOAs is strategic, whereas RSB assumes the central bottle-
neck is a structural property of the cognitive system, so RT2
slowing is unavoidable. Second, SRD assumes that PRP phenom-
ena result from scheduling and control strategies enacted by a
central executive, whereas RSB theory says nothing about such
strategies and explains PRP phenomena without them.! ECTVA is
more like SRD than RSB in these two respects. ECTVA assumes
that executive processes play important roles in PRP phenomena
and that RT2 slowing is strategic—subjects choose to respond
serially because TVA works better in series than in parallel.

Relations among ECTVA, RSB, and SRD. ECTVA can be
viewed in two ways. From one perspective, it may be an elabora-
tion of certain processes in RSB and SRD. ECTVA provides a
specific computational account of stimulus and response selection
stages that are part of RSB and SRD. From another perspective,
ECTVA may be an alternative theory that competes with RSB and
SRD, providing an account of PRP phenomena that differs from

! Of course RSB theorists are aware of executive effects in the PRP (e.g.,
Pashler, 1994a), but the theorists’ awareness is not the issue. Rather, the
issue is the constructs that the theorists include in their theories, and RSB
theories do not include executive scheduling and control strategies in their
explanations of PRP phenomena.
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their accounts in significant ways. At this point, we prefer the first
perspective. We want to use ECTVA to explore certain executive
effects in the PRP task, and that exploration should inform re-
search with RSB and SRD. The second perspective may be an
interesting one to pursue in future research. It would require a
different research agenda, focusing on the data sets that RSB and
SRD address, which concern the locus of the bottleneck, if there is
one, rather than the executive effects that interest us.

Executive Control of TVA

In creating TVA, Bundesen (1990) said “no attempt is made to
discard the notion that attentional selection is controlled by an
intelligent agent, but a serious attempt is made to relieve the
burden on the agent by placing a powerful mechanism at its
disposal” (p. 523). Our theory takes advantage of Bundesen’s
mechanism, placing it at the disposal of an executive process that
controls its parameters. In TVA, performance depends on several
parameters, some of which are determined by the stimulus situa-
tion and some of which are controlled by Bundesen’s intelligent
agent. In our theory, a task set is precisely the set of control
parameters that is necessary to program TVA to perform a par-
ticular task. Task sets differ from each other in terms of the number
of control parameters they require and the values the control
parameters take. In order to distinguish between the executive
processes and the subordinate processes they control, we refer to
the executive part of our theory as ECTVA and the subordinate
part of our theory as TVA. ECTVA is specified more abstractly
than TVA. In terms of Marr’s (1982) levels of analysis, we specify
TVA at the computational and algorithmic levels, whereas we
specify ECTVA at only the computational level. We say what
computations ECTVA must perform to control TVA, but we do
not provide algorithms that perform those computations.

A sketch of the ECTVA architecture is presented in Figure 2.
We provide a computational account of some of the black boxes
underlying performance—those concerned with stimulus selection
(TVA) and response selection (EBRW)—but we say nothing
about the others. We assume an early perceptual stage that encodes
stimuli into a form addressable by TVA, and we assume a later
motor stage that turns a symbolic representation of the response
into an overt action. Like RSB, we assume that the early perceptual
stage can be shared by two or more tasks and that this parallelism
is responsible for underadditive interactions between SOA and
stimulus contrast and intensity (DeJong, 1993; Pashler, 1984;
Pashler & Johnston, 1989).

We assume that task sets are represented in two different sys-
tems, working memory and TVA, at two different levels, the task
level and the parameter level. The task-level representation is held
in working memory and not in TVA. It is a propositional repre-
sentation of the task instructions that specifies the appropriate task
set for the subject. The parameter-level representation is a set of
TVA control parameters that were derived from the propositional
representation. It resides in working memory and, once it has been
transmitted, it also resides in TVA as a set of instantiated param-
eters. Once ECTVA transmits the control parameters to TVA, the
task-level representation may be represented more compactly in
working memory, as a single chunk or a set of chunks, or it may
be allowed to decay because it can be retrieved quickly from

Task Level
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Figure 2. Depiction of the basic architecture of the executive control of
visual attention (ECTVA) theory. Boxes represent processing stages; per-
ceptual and motor stages are discrete; theory of visual attention (TVA) and
exemplar-based random-walk (EBRW) stages are cascaded. Working
memory contains two representations of the task, one at the task level and
one at the parameter level. ECTVA passes parameters from working
memory to TVA.

long-term memory. At this point, we are more concerned with the
interaction between working memory and TVA than with the fate
of the propositional representation of the task set in working
memory.

In our theory, establishing a task set involves passing a set of
control parameters from working memory to TVA, and switch-
ing task sets involves deriving a new set of control parameters
in working memory and passing them to TVA. Transmitting
control parameters is one of two major executive functions in
our theory. The other executive function is to reset evidence-
accumulation processes after a response to prevent persevera-
tion and enable the next response. We are interested primarily
in the time required to switch sets, and we assume that depends
on the number of parameters to be changed. TVA allows us to
enumerate the control parameters required for a given task set
and therefore to make precise predictions about set switching
times. The enumeration of control parameters is strongly con-
strained by the structure of TVA. The control parameters must
be sufficient to allow TVA to perform the task, producing RTs
and accuracies like human subjects.

We assume that the task-level representation is hierarchical,
with the higher level specifying the order in which the tasks occur
and the lower level specifying each task separately. The lower
level chunks are translated into TVA parameters, which are trans-
mitted to TVA. Alternatively, we could assume that the task-level
representation is not hierarchical and does not represent the order
of tasks explicitly. Task order depends entirely on stimulus order;
first come, first served. DeJong (1995) conducted a series of
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experiments to distinguish between these alternatives, and his
results favored hierarchical representation.”

We assume the task-level representation is hierarchical, but we
do not make much use of this assumption in our simulations. We
focus primarily on the time required to transmit a parameter-level
representation of the task set from working memory to TVA. Some
of the details of the hierarchical representation have been ad-
dressed in other work (e.g., Logan, 1995; Logan & Zbrodoff,
1999).

TVA

TVA is a powerful theory with broad scope. Bundesen and his
colleagues developed it to account for a wide range of performance
in partial- and whole-report tasks (Bundesen, 1987; Bundesen,
Pedersen, & Larsen, 1984; Bundesen, Shibuya, & Larsen, 1985;
Duncan et al.,, 1999; Shibuya & Bundesen, 1988). Bundesen
(1990) extended the theory to account for single item identifica-
tion, position cuing, feature search, and priority learning (also see
Bundesen, 1998a, 1998b). Logan (1996) combined TVA with the
COntour DEtector (CODE) theory of perceptual grouping by
proximity (Compton & Logan, 1993, 1999; Van Oeffelen & Vos,
1982, 1983) to form the CODE theory of visual attention (CTVA),
which accounts for a variety of distance and grouping effects in
search and attention tasks, including illusory conjunctions and the
Eriksen and Eriksen (1974) flanker task. Logan and Bundesen
(1996) applied CTVA to distance and grouping effects in partial
report. Logan (2001) related TVA formally to Nosofsky’s (1984,
1986, 1988) generalized context model of classification (GCM)
and Nosofsky and Palmeri’s (1997; also see Palmeri, 1997) EBRW
model of speeded classification, which provide quantitative ac-
counts of an impressive range of phenomena in the categorization
literature. TVA can be configured in a way that mimics the
structure of GCM or EBRW exactly, so in principle it can account
for the same categorization phenomena as GCM and EBRW. Thus,
TVA accounts for a broad range of cognitive phenomena within
and beyond the attention literature. Its success in so many domains
encouraged us to try to extend it to dual-task and executive-
processing phenomena.

ECTVA uses a version of TVA that is extended to include a
random-walk response selection process. This version of TVA is
really TVA combined with Nosofsky and Palmeri’s (1997) EBRW
theory. TVA samples the display and categorizes the samples it
takes. The categorizations accumulate in response counters that
are part of the random-walk response selection process. When the
number of counts in one of the counters exceeds a criterion (i.e.,
when it has K more counts than any other counter) the response
associated with that counter is chosen and executed. This combi-
nation of TVA and EBRW is quite powerful, predicting a broad
range of RT and accuracy effects. The combination is already in
the literature (see Bundesen & Harms, 1999; Logan, 1996, 2001;
Nosofsky & Palmeri, 1997). The novel contribution of ECTVA
lies in specifying how this version of TVA can be controlled to
produce dual-task behavior. As we shall see, not much needs to be
added to TVA and EBRW to account for dual-task phenomena.
TVA has been explained several times in the literature (see
Bundesen, 1990, 1998a, 1998b; Duncan et al., 1999; Logan, 1996,
2001; Logan & Bundesen, 1996). We explain it again in a manner

slightly different from previous explanations to make clear how we
use it in ECTVA.

Attention as choice. The most basic assumption in TVA is that
attention is a choice process (Bundesen, 1998a, 1998b; Logan,
2001). The stimuli in the display (members of the display set D)
compete to be classified as members of a set of response categories
(as members of the response set R). Selection occurs when an
object in the display is assigned to a category in the response set.
The object and the category are chosen at the same time in a single
act of apprehension. The choice process itself involves a race
among the competing alternatives. The runner that finishes first is
selected, or the first several runners to finish may be selected. TVA
assumes that each runner in the race is represented by an indepen-
dent exponential distribution of finishing times that is character-
ized by a rate parameter, v (for velocity). The rate parameter u(x,
i) represents the rate at which the categorization “x is i”” runs in the
race. The probability of choosing categorization i for object x is
given by the ratio of the rate parameter for “x is i” to the sum of
the rate parameters for all possible categorizations in the response
set (i.e., all categories j € R) for all possible objects in the display
(i.e., all objects z € D):

u(x, i)

P(“xis i) = 72 S o)) 48]

€D jER

Because the finishing-time distributions for the runners are
exponential and stochastically independent, the finishing-time dis-
tribution for the winner of the race is also exponential with a rate
parameter equal to the sum of the rate parameters of all the runners
in the race (Townsend & Ashby, 1983). The mean finishing time
for the race, Ty,,,, is given by

1
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2 DeJong (1995) presented subjects with auditory and visual stimuli in a
PRP procedure and allowed the order of stimuli in the dual-task trials to
vary randomly. On some trials, task order repeated (e.g., visual-auditory
followed by visual-auditory). On other trials, it alternated (e.g., visual-
auditory followed by auditory—visual). DeJong argued that the contrast
between repeated and alternating task order distinguished hierarchical
representation from a first-come, first-served strategy. The hierarchical
view represents order explicitly and so should benefit from repetitions of
task order (because that aspect of the task representation does not have to
be changed when task order repeats). It also predicts a tendency to repeat
the task order from the previous trial, so that subjects may respond to S2
before S1 if task order alternates and SOA is brief. By contrast, the
first-come, first-served view does not represent task order explicitly and so
does not predict benefit from task-order repetitions. It predicts faster
performance when task order alternates (e.g., visual-auditory followed by
auditory-visual) because there are fewer set switches (one between S1 and
S2 but none between S2 and the following S1). DeJong’s data supported
the hierarchical view: Subjects were faster when task order repeated than
when it alternated. When task order alternated and SOA was brief (100
ms), subjects often responded in the same order as on the previous trial,
responding to S2 before S1.
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The rate parameters, v, depend on a combination of parameters
that represent the stimulus situation and the task set. To explain the
nature of the parameters and the way they are combined, it is
useful to begin with the choice of a category for a single object and
follow with the complications that arise with several objects in the
display. Those complications include binding objects to categori-
zations and resolving perceptual interference from nearby objects.
After dealing with multiple objects, we introduce the assumptions
about response selection and their interaction with TVA. At that
point, we will be done with the background and ready to proceed
with the new theory (ECTVA) that specifies how TVA is con-
trolled in dual-task situations.

Categorizing one object. If there is only one object (x) in the
display, the rate at which a categorization (i) is selected—that is,
the rate parameter, 1(x, i)—depends on the similarity between the
object and a representation of the response category (i.e., a proto-
type or a set of exemplars) and the subject’s bius toward selecting
objects in the response category. The similarity between object x
and category i is given by (x, i) (n) for evidence). The greater the
similarity, the larger the value of 7. The bias for category i is given
by B, (B for bias); the greater the bias, the larger the value of 8.
The rate parameter «(x, i) is the product of the evidence parameter
and the bias parameter:

v(x’ l) = n(-x’ I)Bz (3)

Equation 3 can be substituted into Equations 1 and 2 to give choice
probabilities and finishing times for single-object categorization.
The expression that results from substituting Equation 3 into
Equation 1,

77()5, i)Bl
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is known as the Shepard—Luce choice rule (Luce, 1963; Shepard,
1957). It has a venerable history, having been used in a large
number of mathematical models for 40 years. Marley and Colonius
(1992) and Bundesen (1993) have shown that independent race
models, such as TVA, were equivalent to a large class of Shepard—
Luce choice models, in that a race model could be constructed to
mimic the choice probabilities of a given Shepard-Luce model.
This equivalence broadens the scope of TVA substantially and
relates it formally to a large number of models (see Logan, 2001).

The evidence parameter 7 is not determined by the homunculus.
It is determined by the stimulus properties of the object x and by
the subject’s history with members of category i. The bias param-
eter 3 is determined by the homunculus. It is one of the four
parameters ECTVA uses to control TVA. It is part of the
parameter-level representation of the task set (see Figure 2).

Evidence and bias combine multiplicatively in Equation 4. Con-
sequently, only objects with high n and high 8 have a chance to be
selected. Objects with low 7 or low 3 or both are unlikely to be
selected. The multiplication allows B to act as a gain control so
ECTVA can “turn up” desired categorizations and “turn down”
undesired ones. The choice of which Bs to set high (i.e., the
decision about the composition of the response set R) corresponds
to response set (Broadbent, 1971) or analyzer selection (Treisman,
1969) in classical analyses of attention.

To illustrate the interaction of 7 and 3, consider a case in which
the digit 7 is presented on a screen and the subject’s task is to
determine its magnitude, that is, to decide whether it is greater
than 5 or less than 5. ECTVA turns a propositional representation
of these instructions into two 8 parameters, 8, for digits greater
than S and B,,,.,, for digits less than 5 (e.g., setting both “high” to
1), and passes these parameters to TVA. When the stimulus
appears (the object x), perceptual processes create 1 values for all
possible categorizations. This is the function of the perceptual
encoding stage in Figure 2. If x is the digit 7, n(x, large) would be
higher than m(x, small) (e.g., 10 and 1, respectively), and n(x, odd)
would be higher than n(x, even) (e.g., 10 and 1, respectively).
However, the task is to discriminate magnitude, so ECTVA sets 3
high (e.g., to 1) for magnitude judgments and low (possibly to 0)
for parity (odd—even) judgments. Consequently, only n(x, large)
and m(x, small) enter the choice competition. In the example, the
probability of choosing “large” when given the digit 7 is n(x,
178€)B1 /1, 1078€)Brarge + (X, SMAIDP,gy] = (10 X 1)/
[(10 X 1) + (1 X 1)] = 0.909 (see Equation 4), and the choice
would be made in 1/{(10 X 1) + (1 X 1)] = 0.091 units of “model
time” (see Equations 2 and 3).

Categorizing two objects: The binding problem. Introducing a
second object, y, into the display complicates the choice process.
The probability of choosing category i for object x is

n(x, i)B;
P 113 : 293 —_ 5
s ) = s DBt S 6, 8, ®
JER JER

Equation 5 shows that the impact of the second object depends on
its similarity to the categories in the response set. If y is very
dissimilar to the categories in the response set, 3 m(y, j) would
approach 0, and P(“x is /") would be almost the same as in the
single-object case; Equation 5 would approximate Equation 4.
However, if y is very similar to the categories in the response set,
2 1y, j) could equal or exceed 3, n(x, j), and P(“x is i”") could drop
below 0.5. For example, if the response set for x was “large or
small digits” and y was a green disk, choice probabilities for x
would not be affected much, but if y was the digit 3, choice
probabilities for x would be affected strongly; y would be as likely
to be chosen as x. If correct performance depended on responding
to x, this level of accuracy would be unacceptable in most RT
experiments. In the example above, assuming that the digit 3
produces (y, large) = 1 and n(y, small) = 10, the probability of
choosing “large”-for the digit 7 would be (10 X 1)/[(10 X 1) +
(I X1+dX1)+ (0 X 1)] = 0455.

The problem introduced by a similar second object is known as
the binding problem: Given two objects and a categorization, how
does the executive system know from which object the categori-
zation came (Hummel & Biederman, 1992; Pylyshyn, 1989;
Treisman & Gelade, 1980; Ullman, 1984)? The first categorization
to be chosen is likely to be a correct categorization of one of the
two objects, but without further information the executive system
has no way to know which object goes with which category.

TVA solves the binding problem by introducing a second way to
choose among objects, through a priority parameter, w (7 for
priority), that represents the importance of selecting objects that
contain one of the properties in the stimulus set S. The idea is to
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choose among objects on the basis of properties that are not in the
response set and to use this choice to direct attention to the target
object. For example, when given a display of two digits, TVA
might give priority to the top digit, setting 1, high (e.g., to 1) and
Tponom 10W (€.8., to 0.1), allowing the top digit to be chosen
instead of the bottom one. This kind of selection by prioritizing is
known as stimulus set (Broadbent, 1971) and input selection
(Treisman, 1969) in classical analyses of attention. It solves the
binding problem by allowing the system to attribute categoriza-
tions that come out of TVA to the stimulus that was currently
prioritized; if “large” comes out of TVA in the example, the
system could attribute it to the top object, which was prioritized.

The priority parameter operates in the same manner as the bias
parameter, acting as a gain control by multiplying evidence pa-
rameters. The products of priority parameters and evidence param-
eters are summed over the stimulus set S for each object to produce
an absolute attention weight. The absolute attention weight on
object x, w,, is given by

w, = 2 n(x, k). (6)

kES

The probability of selecting an object by stimulus set, P_(x),
depends on the relative attention weight given to the object. The
relative attention weight given to object x is the ratio of the
absolute attention weight for object x to the sum of absolute
attention weights for all objects z in the display D:

> nlx, by,
P (x) — W, _ kES . (7)
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The summation over the stimulus set S in Equations 6 and 7
expresses the general case in which there are several properties in
the stimulus set. In typical experiments, there is only one property
in the stimulus set (e.g., “top” in the previous example). Strayer
(1997) examined performance in a visual search task with several
properties in the stimulus set, manipulating the number of prop-
erties that distinguished the target from the distractors. He found
that search RT decreased as the number of properties in the
stimulus set increased, confirming a TVA prediction (Bundesen,
1990).

The priority parameter, like the bias parameter, is determined by
the homunculus.® It is one of the control parameters of TVA and
part of the parameter-level representation of the task set in
ECTVA. The evidence parameter on which it operates is deter-
mined by the stimulus situation and the subject’s history with
members of the relevant category, just like the evidence parameter
on which the bias parameter operated. The difference between
stimulus set and response set is functional rather than structural.
The property that is selected by stimulus set in one task may be
selected by response set in another. For example, in a display with
the digit 7 above the digit 3, one task set might be to select the top
object (stimulus set) and report its magnitude (response set), while
another task set might be to select the large digit (stimulus set) and
report its location (response set; for further discussion of stimulus
set and response set in TVA, see Logan, 2001).

Consider the example of selecting the top digit. If object x is the
top digit, then n(x, top) would be high (e.g., 10), and m(x, botrom)
would be low (e.g., 1). Object y is the bottom object with n(y, top)
low (e.g., 1) and n(y, bottom) high (e.g., 10). ECTVA sets m,,,
high (e.g., 1) to select the top digit and m,,,,,,, low (e.g., 0.1) to
avoid selection of the bottom digit. Following Equation 7, the
probability of selecting the top digit would be [(10 X 1) +
AX0DVMA0O X ) + (1 X0 + (1 X 1)+ (10 X 0.1)]
= 0.835.

The probability of selecting an object by stimulus set combines
with the probability of choosing a categorization by response set
by multiplication: Each 7 value for a response set category is
multiplied by the relative attention weight on the object to which
it refers and that is given by stimulus set. Thus, processing rate
becomes

v(x, i) = 9(x, )B; % ®)
€D

the probability of choosing category i for object x becomes
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In the example above, in which the digit 7 appears on top, the
digit 3 appears on the bottom, and the task is to categorize the
magnitude of the top digit, the probability of calling the top digit
“large” would be (10 X 1 X 0.835)/[(10 X 1 X 0.835) + (1 X
1 X 0.835) + (1 X 1 X 0.165) + (10 X 1 X 0.165)] = 0.878.
Response set by itself produced an accuracy of 0.455 (see Equation
5). Combining stimulus set and response set, as TVA does, in-
creases accuracy considerably.

Perceptual constraints. Single-task performance is strongly
affected by the proximity and perceptual organization of objects in
the display. Logan (1996) and Logan and Bundesen (1996) ad-
dressed these effects by combining TVA with the CODE theory of
perceptual grouping by proximity (Compton & Logan, 1993, 1999;

3 Bundesen (1990) assumed that 7 was driven partly by the environment
and partly by the subject. He assumed that 7 changed during the course of
priority learning (i.e., learning where to look or what to look for in a
display; see Shiffrin & Schneider, 1977). We prefer to interpret priority
learning in terms of changes in m values that 7 multiplies in determining
attention weights (see Equations 6 and 7) rather than in terms of 4 (also see
Logan, 2001). That leaves 1 under the control of the executive and 7 under
the control of the subject’s history with the environment. Future research
will be necessary to distinguish Bundesen’s view from ours.
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Van Oeffelen & Vos, 1982, 1983) to form CTVA. CTVA assumes
that objects are distributed over representational space so that
focusing attention on a region in the display results in a sampling
of the features of several objects, with objects closer to the region
contributing more to the sample. Perceptual organization depends
on the overlapping distributions of object features, and those
distributions determine the regions that attention can address and
sample features from.

The details of CODE and CTVA are not necessary for the
purposes of this article (but see Bundesen, 1998b; Logan, 1996;
Logan & Bundesen, 1996). Suffice it to say that CODE provides
TVA with a feature-catch parameter, c,, that ranges between 0
and 1 and represents the proportion of the features of x that are
available (“caught”) in the current perceptual organization of the
display. CTVA incorporates the feature-catch parameter into TVA
by multiplying each evidence parameter by the appropriate value
of c¢. Processing rate becomes

W,
v(x, 1) = enlx, )B; , 11)
( n )B E w, (
€D
absolute attention weight becomes
w, = E an(x’ k) s (12)
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the probability of choosing “x is i becomes
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The value of ¢ depends partly on the stimulus situation and
partly on the homunculus. It depends on the stimulus situation
because it depends on the proximity of the objects to the sampled
region, and that is determined by the spatial arrangement of objects
in the stimulus display. It depends on the homunculus because the
homunculus chooses among alternative perceptual organizations
of the display and among perceptual groups within the display (see
Logan, 1996); ¢ is part of the parameter-level representation of the
task set.

In our application of TVA to ECTVA we set ¢ = 1 for both of
the objects in the display. Strictly speaking, ECTVA includes TVA
rather than CTVA, but the generalization to CTVA is straightfor-
ward should it be useful in future research.

Response Selection (EBRW)

We model response selection with Nosofsky and Palmeri’s
(1997; also see Palmeri, 1997) EBRW theory. We assume that

TVA works continuously as long as input is present (i.e., as long
as 1 > 0) and B and 7 are set high. Technically, the race in TVA
is a Poisson process that keeps running at the same rate, producing
categorizations with probabilities defined in Equation 13 at a rate
equal to the reciprocal of Equation 14. We assume that the re-
sponse selection process works concurrently with TVA and that its
processing is contingent on TVA’s output (cf. Turvey, 1973).
Thus, TVA and response selection are cascaded stages rather than
discrete stages (Ashby, 1982; McClelland, 1979). TVA’s output—
categorizations of perceptual objects—is accumulated in a re-
sponse selection process that consists of several counters and a
difference threshold, K. We assume there is one counter for each
response and that a perceptual categorization from TVA incre-
ments the counter that corresponds to it. Typically, there is one
counter for each distinct 8 value in TVA, but more complex
mapping rules could be implemented. Each time a counter incre-
ments, the difference threshold is applied. If the number of counts
in one counter exceeds the largest number of counts in the other
counters by K, then response selection terminates, and the response
corresponding to the above-threshold counter is executed.

If K is set to 1.0, then response selection terminates as soon as
TVA provides the first categorization. If K is 1.0, response selec-
tion can be characterized as an independent race model (e.g.,
Bundesen, 1993; Logan, 1988; Strayer, 1997). If K is set to a value
greater than 1.0, several categorizations may accumulate before
one counter exceeds the others by K. If K is greater than 1.0,
response selection can be characterized as a random-walk model
(Nosofsky & Palmeri, 1997; Palmeri, 1997). The race model is a
special case of the random-walk model with K = '1.0. Alterna-
tively, the random-walk model is a generalization of the race
model to values of K greater than 1.0 (Nosofsky & Palmeri, 1997).

The ability to set K to a value greater than 1.0 allows EBRW to
maintain an acceptable level of accuracy when the accuracy of
individual categorizations is less than perfect (Nosofsky & Pal-
meri, 1997; Palmeri, 1997). Individual categorizations may be less
than perfectly accurate because the stimulus is weak (so 7 is
small), the display is crowded (so ¢ is small), the alternative
categories are similar to each other (so /2 7 is small), or there is
conflict from distracting stimuli (e.g., in the flanker task). If
K = 1.0, response selection terminates as soon as the first cate-
gorization finishes, and accuracy is defined by Equation 13. If the
individual categorizations are less than perfect, the first categori-
zation will often be wrong. Setting K greater than 1.0 provides
some insurance against these quick errors. Subsequent runners in
the race can override the influence of the first erroneous catego-
rization so that the response is ultimately correct. If there are two
alternatives, accuracy can be made arbitrarily high by setting K
accordingly, as long as the correct response is more probable than
the incorrect one. The random walk must take more steps as K
increases, so RT and accuracy both increase with K. This is how
random-walk models account for the speed—accuracy tradeoff
(Ratcliff, 1978, 1988).

We assume that X is controlled by the homunculus. ECTVA
uses it to control the speed and accuracy of response selection. It
is part of the parameter-level representation of the task set (see
Figure 2). Following Nosofsky and Palmeri (1997; Palmeri, 1997),
the time taken for each step of the random walk is
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1
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where the first term on the right-hand side is the time taken for the
race, given by Equation 14, and the second term, a, is the time
required to increment the counter and compare counter values
against the difference criterion, K. RT is the sum of the T,,, values
defined in Equation 15 over the number of steps required for the
random walk to terminate. Analytic solutions for the expected
number of steps (RT) and accuracy are available if there are only
two response alternatives (e.g., in Nosofsky & Palmeri, 1997). Our
application to the PRP procedure requires four responses (two for
each task), so we had to simulate the random walk.

We chose to model response selection as a random walk because
random-walk models have provided good accounts of a variety of
RT and accuracy data and the relation between them (see, e.g.,
Ratcliff, 1978, 1988; Townsend & Ashby, 1983). We chose the
EBRW version because EBRW is very similar to TVA formally
(see Logan, 2001). Both assume a Poisson process that produces
similarity-based categorizations at a rate that is influenced by a
bias parameter. EBRW differs from TVA in providing no attention
weights (i.e., the ws in Equations 13 and 14) and in providing no
feature-catch parameters (i.e., the cs in Equations 13 and 14).
However, EBRW “unpacks” the similarity parameter 7, defining it
in terms of distance between stimuli in multidimensional similarity
space, whereas TVA treats it as an atomic entity (so far; but see
Logan, 2001).

Parameters, Task Sets, and Identifiability

To summarize, the single-task version of TVA has six kinds of
parameters: ¢, 1, 7, B, K, and a. One, 1, depends on the stimulus
situation and the subject’s history rather than the subject’s homun-
culus. Another, a, represents a fixed cost of incrementing the
counters and testing the threshold in response selection. The other
four—c, m, B, and K—are under the subject’s control. They give
Bundesen’s (1990) “intelligent agent” control over the “powerful
mechanism” of TVA. In our theory, these four subject-controlled
parameters constitute a task set. They comprise the parameter-level
representation of the task set that ECTVA derives from the task-
level chunk and passes to the subordinate process, TVA. As we
shall see, ECTVA adds two more parameters: one that describes
the mean time required to transmit TV A parameters from working
memory to TVA and one that describes the amount by which the
values in the response counters are reduced after a response (see
Serial Order Problem and Set-Switching Costs sections).

Fitting the single-task version of TVA to a data set can involve
a large number of parameters. Usually, there is only one value of
K and one value of «. There is one ¢ parameter for each object and
each perceptual group. There are 3 parameters for each categori-
zation in the response set R and 7 parameters for each property in
the stimulus set S. There are 1) parameters for each combination of
perceptual object and categorization. A model with so many pa-
rameters would appear to have a lot of flexibility.

In practice, there are constraints on the parameters that reduce
the number required, and Equations 11-14 constrain the interac-
tions among the parameters. Parameter ¢ is a probability, so it

ranges from O to 1.0. It is also constrained by the spatial arrange-
ment of the display (see Logan, 1996). Parameters 8 and 7 usually
range from O to 1.0, although in principle they could take any
positive value. Typically, all of the Bs for desired categorizations
are set to the same value and all of the mrs for desired stimulus
properties are set to the same value. X is usually greater than 1.0
but less than 5.0 or so. It must be greater than 1.0 to prevent fast
errors, but it does not need to be much more than 1.0 to produce
accuracy of 90% or higher. The 7 parameters can be constrained
in several ways. Nosofsky (1984, 1986, 1988) has often fixed their
values by constructing a multidimensional similarity space for the
set of stimuli he uses in his experiments. The % values are then
determined by distances in multidimensional similarity space.
They are no longer free to vary to optimize fit.

We restricted the number of free parameters in our fits to the
data sets, fixing the values of some parameters and choosing one
of two values of other parameters to turn them on and off rather
than to optimize fit to the data sets. We manipulated 7, B, and T,
and we fixed ¢, K, and a. The ns were set to 10 for matching
categorizations and to 1 for mismatching categorizations; 3 and 7
were both set to 1.0 for desired categorizations and to 0.1 for
undesired categorizations; ¢ was fixed at 1.0, so it dropped out of
Equations 1 and 2; K was fixed at 3.0 because this was the smallest
value that produced reasonable accuracy; and « was fixed at 0.3
throughout. We chose these restrictions on the parameters and their
values in order to show that the effects follow from the structure of
the model (i.e., Equations 11-14) and not the parameter values.
Our goal was not to explain all systematic variance in PRP data but
rather to explain certain effects of executive processing in terms of
ECTVA (see Hintzman, 1991).

Executive Control in the PRP Procedure:
Running TVA Twice

So far, we have described the application of TVA to single-task
situations. The novel contribution of ECTVA is to apply TVA to
dual-task situations, specifically to the PRP procedure. ECTVA
deals with the PRP procedure by running TVA twice, once on S1
and once on S2. In order to run TVA twice, ECTVA has to solve
two problems that emerge in dual-task situations: the dual-task
binding problem (Hummel & Biederman, 1992; Pylyshyn, 1989;
Treisman & Gelade, 1980; Ullman, 1984) and the serial order
problem (Lashley, 1951). These problems can be solved by having
the executive manipulate mechanisms that are already part of
TVA.

Dual-Task Binding Problem

In the PRP situation there are two stimuli, S1 and S2, and two
responses, R1 and R2. The dual-task binding problem lies in
figuring out which response goes with which stimulus. TVA
solved the single-task binding problem with stimulus set. It gave
priority to one of the objects, making it more likely to be selected
than the other. Consequently, categorizations that emerged from
TVA and responses that emerged from EBRW could be attributed
to the prioritized object. ECTVA uses stimulus set to solve the
binding problem in dual-task situations by giving priority to S1
and S2 in series. ECTVA sets m high for S1 until R1 emerges and
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then sets o high for S2 to select R2. The categorizations that
emerge from TVA and the responses that emerge from EBRW are
attributed to S1 when S1 has priority and to S2 when S2 has
priority.

TVA’s stimulus-set solution to the binding problem would not
work if both S1 and S2 were given priority at the same time. If S1
and S2 were prioritized in parallel, S2 would be as likely as S1 to
be categorized first in TVA and generate the first response in
EBRW. There would be no way to know which response goes with
which stimulus; the binding problem would remain. Some other
method could be developed to solve it, but that method would
require mechanisms beyond those found in TVA. ECTVA recom-
mends serial processing as the solution to the binding problem,
because it is more parsimonious. It can be done with the stimulus
set mechanism that is already part of TVA.

The serial stimulus-set solution to the binding problem creates a
need for executive processes that change stimulus set from Task 1
to Task 2. Similar executive processes would be required to change
other parameters when other aspects of the task set change from
Task 1 to Task 2 (e.g., response set). We introduced these pro-
cesses earlier, as ones that transmit the parameter-level represen-
tation of the task set from working memory to TVA (see Figure 2).
We address the time course of these processes in the Ser-Switching
Costs section.

Serial Order Problem

The PRP procedure requires two responses: R1 and R2. The first
response (R1) can be chosen with the usual response selection
process—EBRW. The counters accumulate categorizations until
one has K more than any other, and the response associated with
that counter is selected. The serial order problem concerns what
happens next: How is the second response chosen? If EBRW
remains in the same state it was in when R1 was selected, R1 will
continue to have K more categorizations than any other counter,
and R1 will be chosen again and again, perseveratively. R2 would
never be chosen. Something must be done to reset the response
counters to disable R1 and enable R2.

The need to reset the response-selection processes to prevent
perseveration has been apparent for a long time in models that
account for Lashley’s (1951) classical problem of serial order in
behavior. Models of serial order generally assume that response
order is determined by the activation of alternative responses, such
that the most active alternative is chosen (Bryden, 1967; Dell,
Burger, & Svec, 1997; Estes, 1972; MacKay, 1987; Rumelhart &
Norman, 1982). Once the most active alternative is selected, it
must be inhibited or it will be chosen again, perseveratively. The
inhibition makes its activation lower than the next highest alter-
native so the next highest alternative can be chosen in the next
cycle and the next response in the sequence can be executed.

To prevent R1 perseveration in the PRP procedure we assume
that ECTVA inhibits the random-walk counters after R1 was
chosen, reducing them to some percentage of their values. This
inhibition reduces the difference between the largest and next-
largest counter to a value less than K and that enables choice of R2.
The amount by which the counters are inhibited is a parameter of
the model that we fixed at 90% in our simulations. In principle, it
could vary over a broad range and still prevent R1 perseveration

(see ECTVA, Present and Future). We assume that the act of
inhibition takes time. In our simulations we fixed the time it takes,
setting it equal to the time required to change a TVA parameter
(see Set-Switching Costs).

Advantages of Serial Processing

RSB and SRD agree that subjects usually respond serially in the
PRP procedure, but they disagree fundamentally on the reasons for
the seriality. RSB assumes that serial processing is obligatory
because response selection is an unavoidable bottleneck in pro-
cessing; serial response selection is the basic axiom of RSB
(Pashler, 1984; Pashler & Johnston, 1989). SRD assumes that
serial processing is strategic. In principle, subjects could select
responses in parallel, but they choose to select them serially to
comply with instructions or demand characteristics (Meyer &
Kieras, 1997a, 1997b). ECTVA is more like SRD. It can be
configured to process S1 and S2 in series or in parallel, and the
choice between them is strategic. In this section we report simu-
lations that compare serial and parallel versions of ECTVA in
dual-task situations to evaluate the relative advantages.

RSB and SRD differ in their assumptions about capacity limi-
tations in central processes. RSB assumes that response selection
is sharply limited in capacity (Pashler, 1984; Pashler & Johnston,
1989) and that other central processes may be limited in capacity
as well (Jolicoeur, 1998, 1999a, 1999b; Pashler, 1991). SRD
assumes no central capacity limitations in the processing stages
underlying the PRP task (Meyer & Kieras, 1997a, 1997b). ECTVA
assumes there are two sorts of central capacity limitations: one
inherited from TVA and the other inherited from EBRW. Our
simulations evaluate the effects of these limitations on the efficacy
of serial and parallel processing.

TVA’s capacity is defined in terms of the effects of load on
processing rate, u(x, {) (Bundesen, 1990; Townsend & Ashby,
1983). Capacity is unlimited if «(x, i) does not change when
another object is added to the display; capacity is limited if (x, i)
decreases when another object is added to the display, and capacity
is limited and fixed if u(x, i) decreases when another object is
added to the display but the sum of the processing rates over all
objects in the display D is constant (i.e., fixed). By this definition,
TVA is limited in capacity. The capacity limitation occurs because
processing rates are influenced by relative attention weight (de-
fined in Equation 11) rather than absolute attention weight (de-
fined in Equation 12). Equation 11 is reproduced here for conve-
nience. Relative attention weight is computed by dividing the
absolute attention weight on object x by the sum of the attention
weights over all objects z in the display D:

WX
v(x, i) = cnlx, DB; Sw,
2ED

If another object is added to the display, its weight enters the
denominator of this expression. That decreases the relative weight
on object x and consequently slows the processing rates for all
categorizations of object x. Capacity is not fixed, however, because
n(x, i) and B; are not affected by other objects in the display: 3,
Uz, j) is not constant.
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We implemented the standard limited-capacity version of TVA
using Equation 11 to define processing rates. We implemented a
new unlimited-capacity version of TVA by replacing the relative
attention weights in Equation 11 with absolute attention weights
that were not divided by the sum of all the attention weights:

w(x, i) = em(x, )Bw, = c(x, DB; 2, ez, ;. (16)
j€s

Processing rate defined by Equation 16 is unlimited in capacity
because its value does not depend on the number of objects in the

display (cf. Equation 11). X
The capacity limitations in response selection (EBRW) stem
from the parameter a, which represents the cost of incrementing
the random-walk counters and testing the difference threshold, X
(see Equation 15). This cost increases the time required for each
step of the random walk, and that makes RT depend on the number

of steps required to choose a response. If there were no cost of .

incrementing the counters and testing the difference threshold, RT
could be independent of the number of random-walk steps. For
example, if TVA and EBRW were both unlimited in capacity,
parallel processing may double the rate at which TVA produces
categorizations but require twice as many random-walk steps as
serial processing; speeding up TVA may compensate for the
additional random-walk steps. We manipulated capacity limita-
tions in response selection by varying «. In the standard version of
EBRW, response-selection capacity was limited; a was set to 0.3.
In the unlimited-capacity version, o was set to 0.0.

We conducted eight simulations, formed by the factorial com-
bination of serial versus parallel processing, TVA capacity limited
versus unlimited, and EBRW capacity limited (o = 0.3) versus
unlimited (o = 0). K was fixed at 3.0. There were four parallel
models and four corresponding serial models. The parallel models
differed from the serial ones only in the = values. In parallel
processing, 7 was set to 1.0 for both S1 and S2 during Task 1 and
Task 2. In serial processing, 7 was set to 1.0 for S1 and 0.1 for S2
during Task 1, and then it was set to 0.1 for S1 and 1.0 for S2
during Task 2. In all other respects, the corresponding models were
the same. We did not implement the time required for ECTVA to
change TVA parameters or to reset the EBRW counters in these
simulations, and we set the counters to 0 after R1. At this point, we
wanted to address the effects of capacity limitations on serial and
parallel processing without additional complications. We address
the additional complications later. Details of the present simula-
tions are described in Appendix A.

The mean RTs from the simulations appear in Figure 3. RT1
was faster than RT2 in each case. RT1 was faster in the serial
version than in the parallel version whenever TVA capacity or
EBRW capacity was limited. When TVA capacity and EBRW
capacity were both unlimited, RT1 was no faster in the serial
version than in the parallel version. RT2 was faster in the serial
version than in the parallel version whether or not TVA and
EBRW capacities were limited. These results suggest a strategic
advantage for serial processing whenever capacity is limited.*

The accuracy results from the simulations appear in Figure 4.
The results show near-ceiling accuracy in each case of serial
processing and near-chance accuracy in each case of parallel
processing. The parallel-processing results occurred because we
took response order into account when we scored accuracy. R1

was scored correct only if it was the appropriate response to S1; R2
was scored correct only if it was the appropriate response to S2.
TVA nearly always chose the correct response for each stimulus,
but in parallel processing the response to S2 was as likely to finish
before the response to S1 as after it. When we scored accuracy
irrespective of response order, it was near ceiling in the parallel-
processing simulations.

These accuracy results reflect the dual-task binding problem
(Hummel & Biederman, 1992; Treisman & Gelade, 1980; Ullman,
1984). Serial processing solves the binding problem naturally: The
first response to be selected goes with S1, because TVA was set to
process S1 before S2. Parallel processing provides no solution to
the binding problem. Other things equal (i.e., 1, 8, and 7 equal),
R1 is just as likely to follow R2 as to precede it. In principle, some
other process could be added to the parallel model to solve the
binding problem, but that would increase, not reduce, the RT cost
involved in parallel processing. The advantage of serial processing
would remain. :

The mean numbers of steps required for the random walk to
finish appear in Figure 5. In each case, the serial version requires
fewer steps than the parallel version. This is a consequence of the
difference threshold, K. In serial processing the correct response to
S1 has no strong competitors, so it accumulates X more counts
than the next highest alternative relatively quickly. By contrast, in
parallel processing the correct response to S1 has to compete with
the correct response to S2 as well as with their weaker, incorrect
responses. It takes longer to accumulate X more counts than a
strong alternative than to accumulate K more counts than a weak
alternative.

Mean RT was affected by capacity limitations in TVA and
EBRW, but accuracy and the number of random-walk steps was
not. This follows because accuracy and number of random walk
steps depend only on the choice probabilities, given by Equa-
tion 13, and not on the time TVA takes to select each categoriza-
tion or the time it takes to increment the random walk. The choice
probabilities are the same whether TVA capacity is limited or
unlimited. Choice probabilities are calculated with relative atten-
tion weights (Equation 11) when capacity is limited and with
absolute attention weights (Equation 16) when capacity is unlim-
ited. Relative attention weights differ from absolute attention
weights by a denominator that represents the sum of absolute
attention weights over all the objects in the display. This denom-
inator appears in the numerator and denominator of the expression
for choice probabilities (Equation 13) and consequently cancels
out. This can be seen in Equation 13, which is repeated here:

4ECTVA involves two stages, TVA and the random-walk process, in
cascade. TVA capacity limitations affect the first stage, and « affects the
second. The effects of manipulating TVA capacity limitations and «
confirm our two-stage assumption. In the serial simulations, the main effect
of TYA capacity was 52 ms, and the main effect of & was 188 ms, but the
interaction contrast between these effects was 0 ms. In the parallel simu-
lations, the main effect of TVA capacity was 107 ms, the main effect of «
was 373 ms, and the interaction contrast was —3 ms. Variables that affect
different stages in a cascade process produce additive effects (Ashby, 1982;
McClelland, 1979), so TVA capacity limitations and « affect different
stages.
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so is response-selection capacity; in Panel B, TVA capacity is limited, but response-selection capacity is
unlimited; in Panel C, TVA capacity is unlimited, but response-selection capacity is limited; and in Panel D, both
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The middle term is the expression for choice probabilities with
relative attention weights, and the rightmost term is the expression
for choice probabilities with absolute attention weights. The equa-
tion shows the choice probabilities are equivalent. By contrast, RT
depends only on the denominator of Equation 13 and so is faster
the larger the sum of processing rates. The sum of processing rates
is larger when capacity is unlimited than when it is limited as long
as the sum of the attention weights is greater than 1 (i.e., % w_ > 1.0):
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The middle term represents finishing time with relative atten-
tion weights, and the rightmost term represents finishing time
with absolute attention weights. The expression shows they
are not equivalent. RT also depends on the time required to
increment the random-walk counter and test the difference
threshold (i.e., « in Equation 15), and that time is independent
of accuracy.

To summarize, the simulations showed a strong advantage of
serial processing over parallel processing in RT whenever ca-
pacity was limited and a strong advantage in accuracy and the
number of random-walk steps whether or not capacity was
limited. Consequently, we chose to run TVA serially in the
remaining simulations. ECTVA is like SRD and unlike RSB in
that it assumes that serial processing is a strategic choice. In
ECTVA the strategic choice is motivated by the performance of
TVA in parallel and in serial configurations. Serial processing
is advantageous because it is faster and more accurate and

because it provides a natural solution to the dual-task binding
problem.
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Figure 4. Simulated accuracy for Responses 1 and 2 (R1 and R2) from serial and parallel versions of the
executive control of visual attention theory. In Panel A, theory of visual attention (TVA) capacity is limited, and
so is response-selection capacity; in Panel B, TVA capacity is limited, but response-selection capacity is
unlimited; in Panel C, TVA capacity is unlimited, but response-selection capacity is limited; and in Panel D both

TVA and response selection are unlimited in capacity.

Effects of Executive Processing

In theory, executive processes coordinate and control subordi-
nate processes (Logan, 1985; Meyer & Kieras, 1997a, 1997b;
Norman & Shallice, 1986). Empirically, executive processes are
identified with several effects that emerge when two or more
operations must go on at once or when two or more tasks must go
on at once (Duncan, 1979). These effects generally cannot be
explained in terms of subordinate processes, so executive pro-
cesses must be invoked. We consider three such effects—
crosstalk, set-switching costs, and concurrence costs—and see
how ECTVA explains them. It turns out that the machinery we
have described so far is sufficient to account for these effects:
Crosstalk and the dependence of crosstalk on task set is explained
in terms of B, which is part of TVA. We have to add an assumption
that separate Bs can be assigned to S1 and S2, but otherwise the
TVA machinery is sufficient. Set-switching costs are explained in
terms of the time it takes to change parameters and the number of
parameters that need to be changed, which reflect the part of
ECTVA that makes TVA run serially. Concurrence costs are

explained in terms of set-switching time and in terms of response
competition in EBRW.

Crosstalk

The term crosstalk refers to informational interference between
one communication channel and another. Crosstalk is a common
feature of our daily dual-task experience. For example, it is hard to
follow a tune on television when the person next to you is playing
a different tune on the guitar. Crosstalk is a popular topic in
psychological research. Many researchers examine crosstalk in
single-task situations in which distractor stimuli (Eriksen & Erik-
sen, 1974) or distracting attributes (Stroop, 1935) impair RT to the
target stimulus or stimulus attribute. Crosstalk is also found be-
tween tasks in dual-task situations. Between-task crosstalk occurs
when the stimuli from one task are relevant to the task set for the
other task, and consequently influence how the other task is
performed. For example, Navon and Miller (1987) had subjects
decide whether the word in one location was a boy’s name and at
the same time decide whether the word in another location was a
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Figure 5. Mean simulated number of random-walk steps underlying Reaction Times 1 (RT1) and 2 (RT2) from
serial and parallel versions of the executive control of visual attention theory. In Panel A, theory of visual
attention (TVA) capacity is limited, and so is response-selection capacity; in Panel B, TVA capacity is limited,
but response-selection capacity is unlimited; in Panel C, TVA capacity is unlimited, but response-selection
capacity is limited; and in Panel D both TVA and response selection are unlimited in capacity.

city name. When the distractors for the city name task were boys’
names, subjects were substantially slower on the boys’ names task,
as if information from the city-name task “leaked through” (also
see Hirst & Kalmar, 1987).

Several researchers have found crosstalk between tasks in PRP
situations (Duncan, 1979; Hommel, 1998; Logan & Delheimer, in
press; Logan & Schulkind, 2000). For example, Logan and Schul-
kind (2000, Experiment 2) presented subjects with two digits with
an SOA of 0-900 ms between them. Task 1 and Task 2 were both
magnitude judgments (wés the digit larger than 5 or smaller than
5). RT1 and RT2 were both faster if S1 and S2 were both large or
both small (i.e., if the categorizations were congruent) than if one
was large and the other was small (i.e., if the categorizations were
incongruent). The effect of S2 categorization on RT1 is a clear
example of between-task crosstalk. It indicates that Task 2 cate-
gorization processes were active at the same time as Task 1
categorization processes. The processes cannot have been discrete
and serial (Logan & Delheimer, in press; Logan & Schulkind,
2000; also see Townsend & Ashby, 1983).

Crosstalk between tasks depends on overlap between the task
sets for Task 1 and Task 2. Logan and Schulkind (2000) examined
the dependence of crosstalk on task set in a PRP experiment in
which S1 and S2 were both digits. Subjects performed magnitude
judgments (greater than or less than 5) or parity judgments (odd or
even) on them. Subjects experienced all four combinations of task
(parity or magnitude) and stimuli (S1 or S2), producing two
same-task-set conditions (magnitude—magnitude and parity—
parity) and two different-task-set conditions (magnitude—parity
and parity-magnitude). The data showed strong between-task
crosstalk effects only in the same-task-set conditions. When task
set was different, there was no crosstalk. Thus, crosstalk appears to
depend on a common task set.

Overlap in stimulus properties is neither necessary nor sufficient
to produce crosstalk. Logan and Schulkind (2000) found no
crosstalk when the task sets were different even though S1 and S2
were both digits and so overlapped in stimulus properties. Hommel
(1998) found crosstalk with no overlap in stimulus properties. He
had subjects report the color and the location of a disk with
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overlapping response categories. In his first experiment, subjects
reported location by pressing a left or right key and color by saying
“left” for red and “right” for green. He found strong crosstalk
effects under these conditions. In subsequent experiments he had
subjects report color by pressing keys and location by saying “red”
and “green” and found strong crosstalk again.

ECTVA and perceptual crosstalk. Three different mechanisms
that are already part of ECTVA can produce crosstalk in dual-task
situations. One mechanism, implemented primarily in CTVA, is
the feature-catch parameter, c. If a distractor object is sufficiently
close to a target, features of the distractor will be “caught” in the
sample of features taken from the target. Those distractor features
will be interpreted in terms of the task set (i.e., the set of 8 values)
that is applied to the target and may facilitate performance if the
interpretation is consistent with the target or impair performance if
the interpretation is inconsistent with the target. Logan (1996) used
this idea to account for the effects of distractor congruity and
proximity in Eriksen and Eriksen’s (1974) flanker task.

Perceptual crosstalk produced by the feature-catch parameter
_cannot be modulated by task set, as the crosstalk observed in
Logan and Schulkind’s (2000) experiment was modulated. The
features “caught” at the target location are analyzed in terms of the
target’s task set regardless of the task set (if any) applied to the
distractors. Consequently, we decided not to implement perceptual
crosstalk in our attempt to model our PRP crosstalk effects. We set
cto 1.0 for S1 and S2—we simulated TVA instead of CTVA. That
removed perceptual crosstalk and simplified the equations.

ECTVA and category-level crosstalk. The second kind of
crosstalk is a consequence of the stimulus-set or serial-processing
solution to the binding problem: ECTVA attributes all categoriza-
tions to the stimulus that is currently given priority. The model
does not know explicitly whether a given categorization came
from S1 or S2 (see Logan, Taylor, & Etherton, 1999), but it makes
an attribution based on the assumption that the categorization is
likely to have come from the currently prioritized object. If priority
is high for S1, then categorizations of S2 count in choosing a
response to S1. If priority is high for S2, then categorizations of S1
count in choosing a response to S2. The probability of increment-
ing an EBRW counter depends on the probability of categorizing
both S1 and S2 as members of that category. Formally, we defined
categorization probabilities in terms of the following equation:

P(“xis ") = P(“S11is ") + P(“S2 is i)

_ v(S1,i)
D uSLj) + > u(S2, )
JER JER

N v(S2,i)
> o(S1,)) + > u(S2,))
JER jer

_ v(S1,i) + v(S2,i)
T > uSL )+ w(S2, )’

JER JER

an

rather than in terms of Equation 13. This crosstalk occurs at the
category level rather than the perceptual level. Categorizations are

confused. Perceptual evidence for the categorizations is not
confused.

To understand how Equation 17 produces crosstalk, consider a
concrete example presented in Figure 6. There are two stimuli, S1
and S2, presented one above the other. S1 is on top. Each stimulus
is a digit and has two dimensions—magnitude and parity—and
each dimension has two possible values: large or small for mag-
nitude and odd or even for parity. Let us focus first on crosstalk
from S2 to S1, which occurs during Task 1. We assume that S1
is 7, so it is large and odd. This is represented in TVA by four 7
values: n(S1, large), which is set to 10.0; n(S1, small), which is set
to 1.0; n(S1, odd), which is set to 10.0; and 1(S1, even), which is
set to 1.0. Task 1 is to discriminate magnitude, so B,,,.. and B,
are set high (to 1.0), and 8, and B,,.,, are set low (0.1). Process-
ing is serial, 50 1, is set high (1.0) to select S1, and m,,,,,,,,, is set
low (0.1) to exclude S2.

Processing rates for each categorization of S1 are determined by
multiplying 7, B, and 7 values. For example, «(S1, large) is
computed by multiplying n(S{, large) by B,,,,. and multiplying
that value by the product of n(S1, top) and m,,,, which represents
the attention weight on S1.° The results of this multiplication for
the four possible categorizations of S1 appear in Figure 6. The
processing rate for “large” (i.e., v[SI, large]) is higher than any
other, so S1 is likely to be classified as large.

The middle and bottom panels of Figure 6 show the processing
rates for S2. The middle panel shows the congruent case, in which
S2 is 9 so it is categorized the same as S1 (i.e., large and odd),
sharing the same values of the two dimensions. Consequently, the
7 values are the same as for S1: high for large and odd and low for
small and even. We assume that the task set is the same for S2 as
for S1, so B,,,,. and B,,,,; are set high, and B,,,, and B,,.,, are set
low. Processing is serial, so 1, is low, to exclude S2. The
processing rates for the four possible categorizations appear in
Figure 6. They are lower overall than the processing rates for S1,
but they show the same pattern: Like S1, S2 is most likely to be
categorized as large. The processing rates for S1 and S2 add
together to produce response probabilities (Equation 17), and that
increases the likelihood of categorizing S1 as large. Consequently,
RT1 will be facilitated, and R1 accuracy will be high.

The bottom panel of Figure 6 contains the incongruent case, in
which S2 is 3. It differs from S1 in the relevant dimension (i.e.,
magnitude). The pattern of n values is reversed: n(52, large) is
now 1.0, and n(S2, small) is now 10.0. The task set is the same as
in the congruent case, and processing is still serial, so the 8 and =
values remain the same. The processing rates for S2 remain lower
than the processing rates for S1, but now the pattern is different. S2
is more likely to be categorized as small than large, and this
conflicts with the categorization of S1. When the processing rates
for S1 and S2 are added together (Equation 17), the probability of
categorizing S1 as large is not enhanced, as it was in the congruent

5To simplify Figure 6, we assumed capacity was unlimited, so
the attention weight n(Si, top)m,,, would not have to be divided by
the sum of the attention weights on S1 and S2. We also ignored 7(SI,
bottom)Ty,.0m in the calculation. Its value would have been negligible
(i.e,, 1.0 X 0.1 = 0.1) and so could be ignored. Note that we did not use
these simplifications in our simulations of ECTVA.
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Figure 6. Executive control of visual attention theory (ECTVA) account of crosstalk. The top panel presents
ECTVA response to Stimulus 1 (S1), the middle panel presents ECTVA response to S2 when S1 and S2 are
congruent, and the bottom panel presents ECTVA response to S2 when S1 and S2 are incongruent. Note that the
processing rates, v, are determined by two 7 values. The first one represents the similarity between the stimulus
and the to-be-reported category in the response set (determined by S3), and the other represents the similarity
between the stimulus position and the position that is given priority (determined by ) in the stimulus set.

case. Rather, the probability of categorizing S1 as small is en-
hanced, resulting in an increase in RT1 and a decrease in R1
accuracy.

ECTVA explains crosstalk from S2 to S1 during Task 1 with
one mechanism, the source confusion that results from attributing
all categorizations to the currently prioritized object (i.e., Equation

17). ECTVA explains crosstalk from S1 to S2 during Task 2 with
two mechanisms. One is the category-level mechanism just de-
scribed, and the other is a response-level mechanism, described
below. Computing category-level crosstalk from S1 to S2 requires
changing the w7 values so that =, is low, to exclude Si, and
Tyonom 15 igh, to select S2. Otherwise, the processing rates can be
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computed in the same way as in Figure 6. If S1 and S2 are
congruent, RT2 will be facilitated and R2 accuracy will be higher.

ECTVA and response-level crosstalk. The third ECTVA
mechanism for producing crosstalk lies in the inhibition of the
random-walk counters. Once R1 is chosen, ECTVA inhibits the
values in the random-walk counters to prevent perseveration of R1.
Our simulations reduce the counter values by 90%. This incom-
plete inhibition produces crosstalk from R1 to R2. It leaves a
“trace” of S1 in the counters, and the trace biases EBRW to
respond to S2 in the same way it responded to S1. If S2 is the same
as S1 or congruent with it, fewer counts will be needed to cate-
gorize S2 correctly, and RT2 and R2 accuracy will be facilitated.
If S2 is different from S1 or incongruent with it, more counts will
be needed to respond to S2 correctly, and RT2 and R2 accuracy
will be impaired. We discuss the relation between the amount by
which the counters are inhibited and the amount of crosstalk later
(see ECTVA, Present and Future).

Set-Switching Costs

In daily life, people switch between tasks as often as they do two
tasks at once. A task performed alone can seem more difficult if it
is preceded and followed by other demanding tasks, as many
parents can attest. Psychologists have become quite interested in
switching between tasks in recent years, although the first study
was done a long time ago. Jersild (1927) showed that subjects were
substantially slower to perform two tasks when they had to alter-
nate between task sets than when they stayed with one task set
throughout. This sez-switching cost has proven to be easy to
replicate in a variety of domains and has become a popular topic
for research because of what it can reveal about executive control
processes (see e.g., Allport et al., 1994; Allport & Wylie, 2000;
Delong, 2000; Meiran, 1996; Rogers & Monsell, 1995).

The typical PRP procedure involves a change in task set from
Task 1 to Task 2 (e.g., from tone discrimination to letter discrim-
ination; Pashler & Johnston, 1989), but PRP researchers have not
been concerned with set switching or with the interactions it may
produce or prevent. Logan and Schulkind (2000) examined set
switching in the digit magnitude and parity PRP tasks we just
discussed. They found that RT1 and RT2 were both much slower
when the task set was different (e.g., Task 1 magnitude, Task 2
parity) than when the task set was the same (both magnitude or
both parity), suggesting that set-switching costs play a large role in
PRP tasks.

ECTVA on set switching. ECTVA allows us to enumerate the
parameters that are necessary to perform several different tasks.
This provides us with a formal definition of task set and a defini-
tion of a major independent variable affecting set-switching time:
the number of parameters to be changed (Dixon, 1981; Rosen-
baum, 1980). In our theory, a task set is a set of TVA control
parameters (i.e., ¢, 3, m, and K) that is sufficient to produce
responses that fulfill the task goals. Whenever the task changes,
some control parameters must be changed so that TVA will re-
spond in accord with the new task goals. We assume that several
steps are involved in switching set. ECTVA may have to derive the
TVA parameters from a propositional representation of the task
instructions, and that could take several steps, depending on the
complexity of the instructions. Once TVA parameters are derived

and placed in working memory, ECTVA transfers them to TVA.
We assume that the transfer process takes time, and the time it
takes depends on the number of parameters to be changed (Dixon,
1981; Rosenbaum, 1980). We assume that the transmission pro-
cess is parallel and unlimited in capacity, so the time taken to
switch sets depends on the time required to transmit the slowest
parameter. That is, we assume that all parameters must be trans-
mitted before TVA starts processing, so the time required to
transmit them all is the maximum of the individual transmission
times.

We implement set switching by assuming that transmission
times are distributed exponentially, all with the same rate param-
eter. Thus, the time required to switch N parameters is the maxi-
mum of N samples from the same exponential distribution. The
mean time required to switch N parameters is

131
ETwd = 2 7 (18)
i=1

where v is the rate parameter for the exponential distribution of
transmission times (Townsend & Ashby, 1983). It increases as a
negatively accelerated function of N. To keep the simulations
stochastic, we estimated set-switching time by simulating the
transmission process instead of using the mean value (Equation
18). We took N samples from an exponential distribution with a
given rate parameter and selected the largest value in the set of
samples as the set-switching time for a given trial.

An important step in the ECTVA analysis is determining the
number of parameters to be changed. The number of parameters
that need to be changed is smallest if the task set is the same for
S1 and S2. At minimum, 7 needs to change to select S2 instead of
S1. So one parameter needs to be changed from Task 1 to Task 2.
When the next trial begins, we assume that 7 needs to be changed
once more to select S1 instead of S2. So Task 1 also requires one
parameter to be changed. The situation is more complicated if the
task set changes from Task 1 to Task 2. In addition to resetting 7
to select S2, several 8 values need to be changed to instantiate the
Task 2 response set in TVA and enable R2 selection in EBRW. At
minimum, B for S2 needs to be set high for the categorizations
relevant to Task 2.

According to this analysis, RT1 and RT2 should both include a
component due to set-switching time. The component should be
larger when the task set is different and several parameters have to
change than when the task set is the same and only one parameter
has to change. We assumed that inhibiting the random-walk
counters takes the same time, on average, as transmitting a param-
eter, and we modeled this by adding one more parameter to the
number being transmitted, increasing N in Equation 18 by one unit.

In our theory, the executive responds to states of the subordi-
nate, so we assume that parameter transmission is triggered when
ECTVA detects some state in TVA or EBRW or both. We as-
sumed that ECTVA transmits parameters for Task 1 when it notes
the onset of S1 in TVA, perhaps through changes in 1 (from low
to high) or when it anticipates S1, predicting its onset from TVA’s
response to the warning signal. We did not model the detection
process in our simulations. We assumed that transmission began
with the onset of S1 because it was easy to implement. It was
consistent with some claims in the literature that task sets cannot
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be engaged completely until the relevant stimulus appears (Rogers
& Monsell, 1995; Ward, 1982) and with other claims that subjects
do not prepare optimally (DeJong, 2000). We assumed that
ECTVA began transmitting parameters for Task 2 as soon as
EBRW selected R1. When SOA was shorter than RT1, parameter
transmission began well after S2 appeared. When SOA was longer
than RT1, some or all of the parameters could be transmitted
before S2. For details, see Appendixes A and C.

Set switching modulates crosstalk. ECTVA accounts for the
modulation of crosstalk by task set by assigning Bs separately to
S1 and S2. The Bs for the task set for Task 1 are assigned to S1,
and the Bs for the task set for Task 2 are assigned to S2. When the
task set is the same for Task 1 and Task 2, the Bs are the same, so
categorizations of S1 can be confused with categorizations of S2,
and vice versa (see Equation 17). There will be crosstalk between
S1 and S2. When the task set is different, the Bs are different, and
the categorizations are not likely to be confusable. Crosstalk be-
tween S1 and S2 will be sharply diminished.

The predicted modulation in crosstalk by set switching can be
understood more formally by considering the example in Figure 7.
Figure 7 shows processing rates for S1 and S2 when the task set is
the same or different and Task 1 is underway. As in Figure 6, we
assume that S1 and S2 are digits with two dimensions (magnitude
and parity) and that each dimension has two values (large vs. smail
and odd vs. even). S1 is the digit 9 in the top position, and the task
set is magnitude judgment. The top panel of Figure 7 presents the
7, B, and 7 parameters for S1. The rate parameters show a strong
likelihood of categorizing S1 as large.

The middle and bottom panels of Figure 7 show the processing
rates for S2 as a function of the congruency of S1 and S2. The
middle panel shows the same-task-set condition. Both Task 1 and
Task 2 involve magnitude judgments. The B values for S2 are set
high for large and small and low for odd and even, just as they
were for S1. The S2 processing rates are higher for magnitude than
for parity and so have a strong impact on Sl categorization
probabilities.

The bottom panel of Figure 7 shows the different-task-set con-
dition for S2. The task set for Task 2 is parity rather than magni-
tude. The S2 i and = values are the same as in the same-task-set
condition, but the § values are different. They are set low for large
and small and high for odd and even, reflecting the different task
set. Consequently, the pattern of processing rates is different. Now
the S2 processing rates are for low for magnitude and high for
parity. When processing rates are added to produce categorization
probabilities, following Equation 17, the small processing rates for
magnitude have little effect on S1 categorization probabilities. The
same considerations apply to Task 2. Categorization probabilities
for S2 will be affected more if the task set is the same than if it is
different, just as they were for S1.

The idea that Bs can be assigned separately to S1 and S2 plays
a crucial role in ECTVA’s account of the modulation of crosstalk
by task set, but it was not part of TVA. It is new to ECTVA. In
single-task TVA, s generally applied to all stimuli in the display
(Bundesen, 1990). The dual-task situation creates a need to re-
spond differently to different parts of the display. Indeed, the
instructions specify separate task sets—separate discriminations
and responses—for S1 and S2, and it seems reasonable that the
task sets would be represented separately and associated with the

relevant stimuli in ECTVA'’s task-level representation in working
memory (see Figure 2). The additional assumption is that task sets
are also represented separately in the parameter-level representa-
tion in working memory and TVA.

The idea that Bs can be set separately for S1 and S2 implies that
Bs can be set low as well as high. Our simulations of different-
task-set and single-task conditions assume that ECTVA sets Bs for
S2 low when it is processing S1 and then sets Bs for S1 low when
it is processing S2. The time required to change these Bs contrib-
utes to set-switching costs. Our simulations of same-task-set con-
ditions, however, assume that ECTVA sets s high for both S1 and
S2 and keeps them high throughout Task 1 and Task 2 to reduce
set-switching time (see Appendices C and G).

Concurrence Costs

In daily life, the contrast between doing two things at once and
doing one thing at a time is often particularly salient. When you
drive fast in heavy traffic, deep philosophical discussions are out
of the question. The contrast between dual-task and single-task
performance has been salient in the psychological literature as
well. Many dual-task studies contrast performance in dual-task
conditions with performance in single-task control conditions and,
as in daily life, performance is usually worse in dual-task condi-
tions. This difference is known as concurrence cost (Navon &
Gopher, 1979). Some portion of the concurrence cost may be due
to increased demands for cognitive “resources” or central bottle-
necks during dual-task performance, but some other portion ap-
pears to be due to the expectation to perform two tasks in the
dual-task condition (Logan, 1979, 1980b). Gottsdanker (1979), for
example, showed that RT2 was slowed substantially when S1 was
expected but did not appear.

Studies of the PRP typically do not include single-task controls.
The invariance of RT1 over SOA is taken as evidence that Task 1
received priority and was protected from interference (Pashler,
1994a). This conclusion seems to imply that Task 1 performance
would be equivalent to single-task performance. The elevation of
RT?2 at short SOAs is interpreted as dual-task interference, and the
decline in RT2 as SOA increases is assumed (perhaps implicitly)
to asymptote at the level of single-task performance on Task 2.
Thus, for Task 2, performance at a long SOA can serve as a
single-task control for performance at short SOAs.

A few studies have run single-task controls in the PRP proce-
dure. Studies that compared dual-task RT1 with single-task RT
generally found slower RTs in the dual-task condition (Bertelson,
1967; Gottsdanker, Broadbent, & Van Sant, 1963; Herman &
McCauley, 1969; Hommel, 1998). Other studies compared RT2 in
single- and dual-task conditions. RT2 was usually much longer
than single-task controls. Although the RT1 effects are important
(see, e.g., Herman & Kantowitz, 1970), researchers have focused
more on the RT?2 effects. For example, Pashler (1984) first worked
out his arguments for RSB by contrasting RT2 in dual-task con-
ditions with RT to the same stimulus (and task) in single-task
conditions. Later, he and Johnston worked out the arguments in
terms of the contrast between RT2 effects at long and short SOAs
(Pashler & Johnston, 1989). Since then, most PRP studies have
followed Pashler and Johnston’s example and compared RT2
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Figure 7. Executive control of visual attention theory (ECTVA) account of the modulation of crosstalk by task
set. The top panel presents ECTVA response to Stimulus 1 (S1), the middle panel presents ECTVA response to
S2 when the task set is the same for S1 and S2, and the bottom panel presents ECTV A response to S2 when the
task set is different for S1 and S2. Note that the processing rates, v, are determined by two 7 values. The first
one represents the similarity between the stimulus and the to-be-reported category in the response set (deter-
mined by ), and the other represents the similarity between the stimulus position and the position that is given
priority (determined by ) in the stimulus set. bot = bottom.
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effects at long and short SOAs rather than single- and dual-task
RT.

ECTVA on concurrence costs. ECTVA has two explanations
for concurrence cost. One is in terms of set-switching time. Even
the same-task-set condition requires a resetting of the 7 parameter
to refocus attention on S1. The different-task-set condition requires
a change of several Bs as well. By contrast, no parameters need to
be changed in single-task conditions. All that is needed for the next
trial are the 7 and B values from the last trial. The parameter
values may need to be “refreshed” occasionally, but not nearly as
often as in dual-task conditions.

The second account of concurrence cost involves the old idea of
response conflict (Berlyne, 1957; Herman & Kantowitz, 1970).
There are more potential responses in dual-task conditions than in
single-task conditions, and we assume that subjects try to prepare
all potential responses before each trial. We assume that the
prepared responses compete against each other. The more re-
sponses, the stronger the competition. Following Berlyne (1957)
and Herman and Kantowitz (1970), we assume that response
competition takes time to resolve, and the stronger the competi-
tion, the greater the amount of time required for resolution. Thus,
RT1 should be longer in dual-task conditions than in single-task
control conditions because R1 suffers more competition from other
responses in the dual-task context.

Response competition also provides an account of a puzzling
but persistent finding in Logan and Schulkind’s (2000) data, that
RT2 was faster than RT1 at long SOAs (also see the present
experiments). We assume that subjects stop preparing the alterna-
tives for R1 once R1 is executed and start preparing only the
alternatives for R2. Thus, there would be less response competition
when R2 was executed than when R1 was executed. At long
SOAs, this weaker competition would allow RT2 to become faster
than RT1.

ECTVA accounts for response competition in terms of proper-
ties that are already part of EBRW. In EBRW, the winning
response has to accumulate K more counts than the next highest
alternative. The more responses, the greater the likelihood that an
inappropriate response will accumulate a large number of counts
and force the correct counter to accumulate more counts to exceed
the difference criterion K. We assumed that two random-walk
counters were used in single-task conditions but that four were
used during Task 1 in the dual-task condition, two for each
stimulus (S1 and S2). Thus, R1 had to beat only one incorrect
alternative in single-task conditions, but it had to beat the largest
of three alternatives in dual-task conditions. The largest of three is
likely to be larger than the value in a single counter, so RT1 would
be longer in dual-task conditions than in single-task controls. We
assumed that ECTVA “jettisoned” the response alternatives for
Task 1 when R1 was executed, so that only two random-walk
counters would be considered during Task 2. Then the correct
counter had to exceed only one incorrect counter, and this sped
RT?2, relative to RT1, and resulted in RT2 being faster than RT1 at
the longest SOAs (see Logan & Schulkind, 2000).

Crosstalk in single- and dual-task conditions. ECTVA pre-
dicts stronger crosstalk in dual-task conditions than in single-task
conditions, provided that the task set is the same. Crosstalk is
reduced in single-task conditions for the same reason it is reduced
in different-task-set dual-task conditions: ECTVA can set SBs sep-

arately for S1 and S2, and it sets Bs for the irrelevant stimulus low
in single-task conditions. This reduces the processing rates for
categorizations of the irrelevant stimulus, and that reduces their
impact on choice probabilities for the relevant stimulus (see Equa-
tion 17).

The Experiments

We performed three experiments to test the ECTVA predictions
and to obtain data sets to model with ECTVA. The first two
experiments addressed crosstalk and concurrence cost. In Experi-
ment 1 we compared single- and dual-task conditions within
subjects. In Experiment 2 we compared them between subjects and
tested an assumption, implicit in Equation 17, that stimulus repe-
tition is ‘not necessary to produce crosstalk. In Experiment 3 we
addressed the interaction between set switching and crosstalk, to
see whether ECTVA could account for the modulation of crosstalk
by task set. To keep the presentation brief, details of the methods
and analyses with inferential statistics are presented in Appendices
B, D, and E for Experiments 1, 2, and 3, respectively. The details
of ECTVA simulations of the experiments appear in Appendixes
C, F, and G, respectively.

Experiment 1: Concurrence Cost and Crosstalk

In Experiment 1 we examined concurrence cost and crosstalk.
Subjects saw two digits on each trial and made magnitude judg-
ments about them. In the dual-task condition they had to decide
whether each digit was greater than 5 or less than 5. Thus, their
task set remained the same from Task 1 to Task 2. In the single-
task condition they had to decide whether the first digit was greater
or less than 5 and ignore the second digit. If there are concurrence
costs in the PRP procedure, RT1 should be slower in dual-task
conditions than in single-task conditions.

In Experiment 1 we also examined crosstalk from bottleneck or
postbottleneck processes in Task 2 to Task 1. The digits on each
trial could be congruent (i.e., both greater than 5 or both less than
5) or incongruent (i.e., one greater than 5 and one less than 5). This
congruency effect is most likely a response repetition effect
(Pashler & Baylis, 1991), which is supposed to affect bottleneck or
postbottleneck processes (Pashler & Johnston, 1989).

There were four SOAs: 0, 100, 300, and 900 ms. The details of
the procedure can be found in Appendix B.

Results. The mean RTs for single- and dual-task conditions are
plotted as a function of SOA in Figure 8. The accuracy data and
inferential statistics are presented in Appendix B. RT2 decreased
substantially as SOA increased, while RT1 increased slightly.
There was a strong concurrence cost: Subjects took 179 ms longer
to respond to S1 in dual-task conditions. There was also a crosstalk
effect: Subjects were faster when S1 and S2 were both large or
both small than when one was large and the other was small. This
crosstalk effect averaged 29, 90, and —3 ms for RT1 dual task,
RT2 dual task, and RT1 single task, respectively. Finally, RT2 was
167 ms faster than RT1 at the longest (900-ms) SOA, which
challenges the idea that RT1 is equivalent to single-task controls.

Discussion. This experiment replicated the standard PRP ef-
fects in RT1 and RT2. On average, RT2 decreased by 296 ms from
SOA = 0 to SOA = 300 ms, which is very close to the 300-ms
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Figure 8. Mean reaction time (RT) in single- and dual-task conditions as
a function of stimulus onset asynchrony for magnitude judgments in
Experiment 1. RT1 = RT to Stimulus 1 (S1) in dual-task conditions;
RT2 = RT to S2 in dual-task conditions; Single = RT to S! in single-task
conditions; Congruent = first and second stimuli in the same response
category; Incongruent = first and second stimuli in different response
categories.

value one would expect if the slope were —1. We also found a
strong concurrence cost and strong crosstalk effects in dual-task
conditions for both RT1 and RT2. Subjects responded faster if S1
and S2 were both greater than 5 or both less than 5 than if one was
greater than 5 and the other was smaller. The congruency effect on
RT1 suggests that response selection for S2 began before response
selection for S1 was complete (Logan & Delheimer, in press;
Logan & Schulkind, 2000; Townsend & Ashby, 1983). This con-
gruency effect is mostly a response repetition effect, because
stimulus repetitions were quite rare, occurring on 12.5% of the
trials. We analyzed stimulus repetitions separately from response
repetitions and found a congruency effect in both cases, although
it was somewhat stronger for stimulus repetitions (see Appen-
dix B).

We found essentially no crosstalk in single-task conditions, in
contrast with the strong crosstalk we found in RT1 and RT2.
ECTVA predicted this modulation in crosstalk by single- versus
dual-task conditions.

ECTVA analysis. We simulated Experiment 1 with ECTVA.
The details of the simulation, including accuracies, which were
high, are presented in Appendix C. The simulated RTs are pre-
sented in Figure 9. ECTVA produced the concurrence costs seen in
the data from our subjects. These costs are due in part to set
switching; 7r had to be set high to select S1 before dual-task Task 1
could begin, whereas no such resetting of m was required in
single-task conditions. The costs were due in part to response
competition. Four counters had to be compared with the random-
walk threshold to choose R1 in dual-task conditions, whereas only
two counters had to be compared in single-task conditions. Dif-
ferential response competition also made RT2 faster than RT1 at
the longest SOA. Four counters had to be compared for R1, but
only two had to be compared for R2.

ECTVA also produced the crosstalk observed in dual-task con-
ditions. The predicted crosstalk effect was larger for RT2 than for

RT1, as in our subjects’ data, and the RT1 effect diminished as
SOA increased, as in our subjects’ data. RT2 crosstalk also de-
creased over SOA (from 143 ms to 88 ms) but not as much as in
our subjects’ data (from 146 ms to 24 ms). It is likely that the
reduction in the RT2 crosstalk we observed at the 900-ms SOA is
due to some process we have not modeled. Subjects may inhibit
counters more completely when SOA is long. The inhibition
process may be repeated, reducing the values in the counters
further, or it may take time to have its effect, so that the values
decrease continuously over time. Alternatively, subjects may have
time to turn down B for Task 1 when SOA is long, to reduce the
impact of S1 on selection of R2. We leave these details for future
investigations. At present, we are more interested in capturing the
qualitative pattern with a simple version of ECTVA than in ac-
counting for all the systematic variance in the data (see Hintzman,
1991). The fits in Figure 9 were obtained by turning parameters off
and on (7 and B were 1.0 or 0.1, and n was 10 or 1, regardless of
SOA).

The crosstalk in RT1 occurred because we kept 3 high for
Task 2 classifications throughout Task 1. The crosstalk in RT2
derives from two sources: 3 for Task 1 is high throughout Task 2,
and the counters retain the pattern they contained when R1 was
executed, although its amplitude is reduced by 90%. The residual
values in the counters favor RT2 when S1 and S2 are compatible
and hinder RT2 when S1 and S2 are incompatible. ECTVA also
produced the reduction in crosstalk in single-task conditions, rel-
ative to RT1, that it predicted a priori and that was observed in our
data. This occurred because B for S2 categorizations was low in
single-task conditions and high in dual-task conditions.

Experiment 2: Concurrence Cost, Crosstalk, and Overlap
of Task Set

In the second experiment subjects saw a centrally presented
word with two colored bars, one above and one below it. The
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Figure 9. Executive control of visual attention theory simulation of mean
reaction time (RT) from Experiment 1 in single- and dual-task conditions
as a function of stimulus onset asynchrony in Experiment 1. RT1 = RT to
Stimulus 1 (S1) in dual-task conditions; RT2 = RT to S2 in dual-task
conditions; Single = RT to S1 in single-task conditions; Congruent = S1
and S2 in the same response category; Incongruent = S1 and S2 in
different response categories.
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words were RED, GREEN, and BLUE, and the colors were red,
green, and blue. Colors and words were combined randomly, so
one third of the trials involved congruent combinations (e.g., RED
surrounded by red color bars), and two thirds involved incongruent
combinations (e.g., RED surrounded by blue color bars). Subjects
performed one or two tasks on these stimuli. Dual-task subjects
responded to both the word and the color bar on each trial.
Single-task subjects responded only to the word or only to the
color. Our main goal was to see whether crosstalk and concurrence
costs would appear with this procedure.

Experiment 2 differed from Experiment 1 in that the task set was
not identical for Task 1 and Task 2. Task 1 addressed colors, and
Task 2 addressed words (or vice versa). As in the previous exper-
iment, the responses were different; subjects responded to Task 1
with their right hands and to Task 2 with their left hands. The
task-relevant categorizations overlapped, however. Hommel’s
(1998) experiments suggest this is sufficient to produce crosstalk
between responses, but responses in his experiments were typically
made to different attributes of the same stimulus. Our experiment
extends Hommel’s results to separate stimuli, which is more typ-
ical of the PRP procedure.

In this experiment we tested an ECTVA prediction, implicit in
Equation 17, that stimulus repetition is not necessary to produce
crosstalk between tasks. The crosstalk described in Equation 17
occurs postcategorically because categorizations rather than stim-
uli are confused. It should not matter whether the categorizations
came from the same kind of stimulus or from different kinds of
stimuli. In Experiment 2 we tested this prediction by using differ-
ent stimuli for Task 1 and Task 2 (words vs. color bars). If stimulus
repetition is necessary to produce crosstalk, we should see no
crosstalk here.

We expected crosstalk between the color and word task because
Experiment 2 is a conceptual replication of the classic Stroop
(1935) effect. In hundreds of experiments, subjects have been
found to be slower to name the color of the stimulus when a
concurrent word is the name of another color (for a review, see
MacLeod, 1991). The original Stroop effect was observed with
integral colors and words (e.g., RED written in green ink), but
many researchers have found strong Stroop effects when the color
and word are presented separately, as in the present experiment
(e.g., RED surrounded by green color bars; e.g., Glaser & Glaser,
1982; Kahneman & Chajczyck, 1983). Our single-task conditions
replicate this procedure, so they should replicate the standard
Stroop effect. The main questions were whether there would be
crosstalk between the colors and the words in dual-task conditions
and whether crosstalk would be stronger in dual-task conditions
than in single-task conditions, as ECTVA predicts.

There were four SOAs: 0, 100, 300, and 900 ms. Single- versus
dual-task conditions varied between subjects. In the single-task
conditions, some subjects responded to S1 while others responded
to S2. The remaining details of the method appear in Appendix D.

Results. Mean RTs for responses to the color in single- and
dual-task conditions are plotted as a function of SOA in Figﬁre
10A. Mean RTs for responses to the word are plotted similarly in
Figure 10B. Accuracy and inferential statistics are presented in
Appendix D. The mean RTs from the dual-task conditions repli-
cate the basic PRP effects: RT1 was relatively unaffected by SOA,
while RT2 was strongly affected. In addition, we observed three
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Figure 10. Mean reaction times (RTs) for color naming responses (Panel
A) and word reading responses (Panel B) in single- and dual-task condi-
tions in Experiment 2. Singlel = RT to Stimulus 1 (S1) in single-task
conditions;SingleZ = RT to S2 in single-task conditions; RT1 = RT to S1
in dual-task conditions; RT2 = RT to S2 in dual-task conditions; Congru-
ent = S1 and S2 in the same response category; Incongruent = S1 and S2
in different response categories.

theoretically relevant effects: First, there were substantial concur-
rence costs. On average, RT1 was 415 ms slower in dual-task
conditions than in single-task conditions, and RT2 was 481 ms
slower. Second, there was substantial crosstalk between tasks. In
dual-task conditions the congruency effect averaged 139 ms for
RT1 and 228 ms for RT2. The crosstalk effects were much larger
in dual-task conditions than in single-task conditions. The single-
task averages were 10 ms for RT1 and 36 ms for RT2. Third, we
found that RT2 was 289 ms faster than RT1, on average, at the
longest SOA.

Discussion. This experiment revealed strong concurrence
costs and crosstalk effects. Subjects were faster in single-task
conditions than in dual-task conditions. Subjects were also faster if
the color and word were congruent than if they were incongruent.
This effect was an order of magnitude stronger in dual-task con-
ditions than in single-task conditions. It is significant that we
observed strong crosstalk on RT1 in the dual-task conditions.
Given the evidence from the literature that response selection is the
primary locus of the Stroop effect (Fagot & Pashler, 1992), the
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crosstalk effects on RT1 suggest that Task 2 response selection
began before Task 1 response selection finished.

It is significant that we found crosstalk when the stimuli for the
two tasks were different. This supports the ECTVA prediction that
stimulus repetition is not necessary to produce crosstalk (see
Equation 17). This experiment, together with Hommel’s (1998)
experiments, suggests that overlap of stimulus classifications or
response descriptions is sufficient to produce crosstalk between
tasks.

ECTVA analysis. The ECTVA simulation of Experiment 2 is
described in detail in Appendix E. Appendix E also reports the
accuracies, which were high. The simulated RT data appear in
Figure 11. In its present form, ECTVA does not distinguish be-
tween reporting the word and reporting the color, so we did not run
separate simulations for each task.

As Figure 11 shows, ECTVA captured the major RT results.
Single-task RT1 and RT2 were fast and unaffected by SOA and
showed small crosstalk effects. Again, ECTVA captured concur-
rence costs. Single-task RT1 and RT2 were both faster than dual-
task RT1. Dual-task RT1 showed a crosstalk effect that was larger
than the one in the single-task RT1 and RT2 data. Finally, dual-
task RT2 showed a crosstalk effect that was even stronger than the
one observed in dual-task RT1, as it was in the data. The simulated
interaction between congruency and SOA was weaker than the
observed interactions. The stronger interaction in the observed data
may be due to processes we did not mode] (see, e.g., Meyer &
Kieras, 1997b).

The mechanisms that produced these effects were the same as in
Experiment 1. Concurrence cost was due to set-switching costs
(setting 7 for S1) and response competition (six counters in
dual-task conditions; three in single-task conditions). Crosstalk in
dual-task conditions occurred because the Bs were high for Task 2
during Task 1 and the post-R1 inhibition process left the pattern in
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Figure 11. Executive control of visual attention theory simulation of
mean reaction time (RT) from Experiment 2 in single- and dual-task
conditions as a function of stimulus onset asynchrony in Experiment 1.
Singlel = RT to Stimulus 1 (S1) in single-task conditions; Single2 = RT
to S2 in single-task conditions; RT1 = RT to S1 in dual-task conditions;
RT2 = RT to S2 in dual-task conditions; Congruent = S1 and S2 in the
same response category; Incongruent = S1 and S2 in different response
categories.

the counters that produced R1, reduced to 10% of its amplitude.
The crosstalk is postcategorical in that there was no overlap in
stimulus representations. Crosstalk was reduced in single-task
conditions because 8 was low for all categorizations of the to-be-
ignored stimulus.

Experiment 3: Set-Switching Costs and Crosstalk

The third experiment addressed the effects of switching sets
from Task 1 to Task 2 within a trial and from Task 2 to Task 1
from one trial to the next. S1 and S2 were pictures or words. Half
of the pictures depicted animals, and half depicted nonanimals.
Half of the words named animals, and half named nonanimals.
There were two different task sets: form judgments and animacy
judgments. In the form judgment task, subjects decided whether
the stimulus was a picture or a word; in the animacy judgment task,
they decided whether the stimulus represented an animal. Subjects
performed the same task on S1 and S2 for two sessions and
different tasks on S1 and S2 for another two sessions. We used all
four combinations of tasks and stimuli, and each subject was tested
on each combination in a different session. One same-task session
required animacy judgments on S1 and S2. The other same-task
session required form judgments on S1 and S2. One different-task
session required animacy judgments on S1 and form judgments on
S2, while the other different-task session required form judgments
on S1 and animacy judgments on S2. If there are set-switching
costs in the PRP procedure, then performance should be worse in
the different-task conditions than in the same-task conditions. The
effects could appear in both RT1 and RT2.

In Experiment 3 we also manipulated crosstalk between tasks. In
each condition, S1 and S2 were congruent on half of the trials and
incongruent on the other half. In the form task, half of the trials
involved picture—picture or word-word sequences for S1 and S2,
and half involved picture-word or word—picture sequences. In the
animacy task, half of the stimuli involved animal-animal or
nonanimal-nonanimal sequences, and half involved animal-
nonanimal or nonanimal-animal sequences. If there is crosstalk
between tasks, RT1 and RT2 should be faster when the stimuli are
congruent than when they are incongruent.

There were three SOAs: 0, 400, and 1,000 ms. The details of the
method can be found in Appendix F.

Results: Form task. Mean RT1 and RT2 for form judgments
are plotted as a function of SOA in Figure 12. Percentage of
correct responses and inferential statistics appear in Appendix F.
The data replicated the basic PRP effects: RT1 was not affected
much by SOA, but RT2 was strongly affected. There were strong
set-switching effects for both RT1 and RT2. RT1 was 215 ms
slower when the task set changed than when it stayed the same.
RT2 was 500 ms slower. However, the set-switching effects on
RT2 include a Task 1 difficulty effect: RT1 was 137 ms faster on
average in the form task than in the animacy task, so same-task
RT2 should be 137 ms faster than different-task RT2 even if there
were no set-switching costs. Thus, the true set-switching effect on
form judgment RT2 may be estimated more accurately by sub-
tracting the difference in RT1 from the observed set-switching
cost, producing a value of 500 — 137 = 363 ms.

There were strong crosstalk effects that interacted with set
switching. When the task set was the same, RT1 was 50 ms faster
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Figure 12. Mean reaction times (RTs) for form judgments in same task
set (Panel A) and different task set (Panel B) conditions as a function of
stimulus onset asynchrony in Experiment 2. RT1 = RT to Stimulus 1 (S1);
RT2 = RT to S2; Congruent = S1 and S2 in the same response category;
Incongruent = S1 and S2 in different response categories.

when S1 and S2 were congruent than when they were incongruent.
When task set changed from form on S1 to animacy on S2, RT1
was 9 ms slower when S1 and S2 were congruent. The crosstalk
effect in the same-task-set condition was stronger when SOA was
short than when it was long, averaging 111, 27, and 11 ms for
SOAs of 0, 400, and 1,000 ms, respectively.

The same interaction between task set and crosstalk was appar-
ent in the RT2 data. When the task set was the same, the form-
congruency effect was 109 ms; when the task set was different, the
form-congruency effect reversed slightly (—18 ms). The form-
congruency effect in the same-task-set condition decreased as
SOA increased, averaging 209, 78, and 41 ms for SOAs of 0, 400,
and 1,000 ms, respectively.

Results: Animacy task. Mean RT1 and RT2 for animacy judg-
ments are plotted as a function of SOA in Figure 13. Accuracy data
and inferential statistics appear in Appendix F. The animacy data
replicate basic PRP effects as well: RT1 was not affected much by
SOA, whereas RT2 decreased sharply as SOA increased. As with
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form judgments, the animacy task produced strong set-switching
effects. RT1 was 244 ms slower when the task set changed than
when it stayed the same. This set-switching cost was about the
same magnitude as the one found with form judgments in Task 1
(215 ms). RT2 was 218 ms slower overall when the task set
changed, but that difference includes a 137-ms difference in Task 1
difficulty in favor of the different-task-set condition. A more
accurate estimate can be obtained by adding this difference to the
observed set-switching difference, yielding 137 + 218 = 355 ms.
That value is quite close to the corrected value when Task 2
required form judgments (363 ms; cf. Allport et al., 1994).

The crosstalk effects in the animacy task were smaller, but they
followed the same pattern as the effects in the form task. They
were modulated by task set in the same manner. When the task set
was the same, RT1 was 28 ms faster when S1 and S2 were
congruent than when they were incongruent. When the task set was

-different, the congruency effect disappeared. RT1 was 2 ms slower

if S1 and S2 were congruent. The congruency effect was modu-
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Figure 13. Mean reaction times (RTs) for animacy judgments in same
task set (Panel A) and different task set (Panel B) conditions as a function
of stimulus onset asynchrony in Experiment 2. RT1 = RT to Stimulus 1
(S1); RT2 = RT to S2; Congruent = Sl and S2 in the same response
category; Incongruent = S1 and S2 in different response categories.
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lated by SOA in the same-task-set condition, just like the form
congruency effect. The animacy congruency effect was 71, 15, and
—1 ms for SOAs of 0, 100, and 400 ms, respectively.

The animacy congruency effect in RT2 was stronger, but it too
was modulated by task set. When the task set was the same, RT2
was 64 ms faster when S1 and S2 were congruent, whereas when
the task set was different RT2 was 11 ms slower when S1 and S2
were congruent. The congruency effect in the same-task-set con-
dition decreased over SOA, averaging 121, 43, and 28 ms for
SOAs of 0, 400, and 1,000 ms, respectively.

Discussion. This experiment replicated classic PRP results:
RT1 was largely unaffected by SOA, but RT2 was strongly af-
fected. This experiment also showed strong set-switching costs.
RT1 and RT2 were both longer when the task set changed from
Task 1 to Task 2 than when it stayed the same. This experiment
replicated crosstalk from Task 2 to Task 1 in two new tasks: form
judgments and animacy judgments. The experiment also showed
that crosstalk between tasks depended on the task set being the
same for Task 1 and Task 2. No crosstalk was found when the task
set changed from Task 1 to Task 2.

It is interesting that the crosstalk effects were stronger in the
form judgment task than in the animacy judgment task. Animacy
judgments likely required more. difficult discriminations. The pic-
tures and words had to activate semantic memory before an ani-
macy judgment was possible, whereas many simple features dis-
tinguish pictures from words. It was interesting as well that the

set-switching costs were about the same for form judgments and

animacy judgments, despite the difference in propensity to produce
crosstalk (cf. Allport et al., 1994). It suggests that the mechanisms
that produce crosstalk may be different from those responsible for
set-switching costs, as we assumed.

Comparison with Logan and Schulkind’s (2000) Experiment 2.
Figure 14 contains the data from Logan and Schulkind’s (2000)
PRP experiment on set switching that used magnitude and parity
judgments. The same effects were found with both judgments, so
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Figure 14. Mean reaction times (RTs) as a function of stimulus onset
asynchrony for parity and magnitude judgments when the task set is the
same for the first and second stimuli (solid lines) and when the task set is
different (broken lines). RT1 = RT to Stimulus 1 (S1); RT2 = RT t0 S2;
Congruent = S1 and S2 in the same response category; Incongruent = S1
and S2 in different (Diff) response categories.
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Figure 15. Executive control of visual attention theory simulation of
mean reaction times (RTs) from Logan and Schulkind’s (2000) Experi-
ment 2 when the task set is the same (solid lines) and when the task set is
different (broken lines) as a function of stimulus onset asynchrony. RT1 =
RT to Stimulus 1 (§1); RT2 = RT to S2; Congruent = S1 and S2 in the
same response category; Incongruent = S1 and S2 in different (Diff)
response categories.

the data in Figure 14 are collapsed across judgment type. The data
show the same effects seen in our present Experiment 3: RT1 and
RT2 were both longer in the different-task condition than in the
same-task condition, evidencing set-switching costs. There was
strong crosstalk in both RT1 and RT2 in the same-task condition,
but that crosstalk almost disappeared in the different-task condi-
tion. This suggests that the results of the present Experiment 3
generalize to different tasks and different materials.

ECTVA analysis. We simulated Logan and Schulkind’s (2000)
Experiment 2. The details of the simulation and the simulated
accuracy data are presented in Appendix G. The simulated RT data
are presented in Figure 15. The basic PRP effects obtained for RT1
and RT2, and there was strong crosstalk observed in both RT1 and
RT2. The different-task conditions sHow strong set-switching costs
but no crosstalk. RT1 and RT2 were both longer in the different-
task condition than in the same-task condition, but the congruency
of S1 and S2 categorization had no impact on RT1 or RT2. Thus,
ECTVA can capture the major effects in the present Experiment 3
and in Logan and Schulkind’s Experiment 2.

The crosstalk in the same-task conditions occurred for the
reasons described earlier: RT1 crosstalk is due to high Bs for S2
categorizations, and RT2 crosstalk is due to the residual left in the
counters after post-R1 inhibition as well as high Bs for S1 cate-
gorizations. The lack of crosstalk in the different-task-set condi-
tions occurred because the Bs were different for S1 and S2 (see
Figure 7). When Task 1 was underway, the relevant Task 2
categorizations were attenuated by low Bs; when Task 2 was
underway, Task 1 categorizations attenuated similarly. Moreover,
the different-task-set condition leaves a residual pattern in the
counters that is irrelevant to Task 2. It may slow R2, making it take
more counts to achieve K more categorizations in favor of the
correct alternative, but it does not bias R2 toward the correct
response or the other one.
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General Discussion

The experiments showed that three effects identified with exec-
utive processing occur in the PRP procedure: crosstalk, set-
switching costs, and concurrence costs. The simulations showed
that ECTVA could account for the main effects of these variables
and their interactions. These results have implications for the PRP
literature, suggesting ways to integrate the theories as well as to
distinguish them. They have implications for the literature on set
switching and executive processing, suggesting ways to instantiate
the initial theories more concretely by grounding them in a specific
theory of subordinate processing. Our theoretical treatment of the
results has implications for the relation between perceptual atten-
tion and response-oriented attention and for modularity in theoriz-
ing about cognition.

ECTVA, Present and Future

ECTVA adds four main ideas to extend single-task TVA to
dual-task situations. First, it assumes that task sets are sets of
homunculus-controlled parameters in TVA (i.e., ¢, B, 7, and K).
This implies that switching sets involves changing TVA control
parameters, and that implies that set-switching time is a function of
the number of parameters to be changed (Equation 18). Set-
switching time accounts for set-switching costs and some concur-
rence costs. Second, ECTVA assumes that Bs can be assigned
separately to S1 and S2. The Bs are responsible for crosstalk from
S2 to S1 and from S1 to S2, and the ability to assign Bs separately
to S1 and S2 is responsible for the modulation of crosstalk by task
set and by single- versus dual-task conditions. Third, ECTVA
assumes that subjects solve the dual-task binding problem by
making TVA run serially, manipulating 7. First, it sets 7 high for
S1 and low for S2 to run Task 1. Then it sets 7 high for S2 and low
for S1 to run Task 2. The serial strategy implies the basic PRP
effects: Task 1 runs first, so it is unaffected by SOA. Task 2 runs
second, so RT2 depends on SOA; it includes the time that Task 2
has to wait for Task 1 to finish. Fourth, ECTVA assumes that
subjects solve the dual-task serial order problem by inhibiting the
random-walk counters so that the difference between them is less
than the criterion K. This accounts for the ability to avoid perse-
verating on R1 and select R2, and it accounts for some of the
crosstalk from S1 to S2. These ideas add two parameters to the
model: one representing the time required to change a TVA
parameter and one representing the amount by which the random-
walk counters are inhibited. Together with the assumptions that are
already part of TVA (and EBRW), these assumptions account for
data from the experiments we report.

The version of ECTVA that we developed deals with PRP
situations with similar stimuli, similar tasks, and similar responses.
More general versions of ECTVA may be developed to deal with
a broader range of situations. A more general version may replace
the specific version we developed here. An intriguing possibility is
that the more general version may incorporate the specific version
we developed as a special case or an initial strategy, and subjects
may move from one version to another by learning. Subjects may
start a new PRP situation with the version of ECTVA we devel-
oped here—solving the binding problem by processing S1 and S2
in series and solving the serial order problem by inhibiting all the

counters—and learn another version of ECTVA that is tailored to
the particulars of the situation in which they find themselves. Some
aspects of performance change dramatically with practice in dual-
task situations (Logan, 1979; Spelke, Hirst, & Neisser, 1976; but
see Van Selst, Ruthruff, & Johnston, 1999). We consider three
potential changes in ECTVA.

Different solution to the binding problem. The binding prob-
lem occurs when categorizations of S1 and S2 are confusable
(Equation 17). Serial processing allows the system to attribute
categorizations to the currently prioritized stimulus. Different so-
lutions to the binding problem may be possible if the categoriza-
tions of S1 and S2 are not confusable, and those solutions may not
require serial responding (see, e.g., Meyer & Kieras, 1997b).
Subjects may use the content of the categorization to attribute it to
a stimulus. For example, if Task 1 were discriminating high and
low tones, and Task 2 were discriminating vowels and consonants,
the categorizations themselves could be used to identify the stim-
ulus from which they came. “High” would be more likely to come
from the tone than the letter; “vowel” would be more likely to
come from the letter than the tone. Subjects may solve the binding
problem early in practice by processing S1 and S2 in series but
then learn to use categorization content to solve the problem as
they gain experience with the task and consequently process S1
and S2 in parallel. The idea that subjects change the way they solve
problems over practice has some currency in the literature (e.g.,
Anderson, 1993; Logan, 1988).

Different solution to the problem of comparing counter values.
ECTVA assumes that EBRW can evaluate only one difference
criterion at a time. This assumption is central to its predictions
about serial responding and its explanation of concurrence costs.
We chose this assumption partly because it was simple—finding
the largest value in a set is straightforward and easy to imple-
ment—and because it was already part of random-walk models
that exist in the literature (e.g., Nosofsky & Palmeri, 1997; Rat-
cliff, 1978, 1988). It may be possible to develop choice rules that
look at other differences between the counters, but they are likely
to be more complicated than the simple rule implemented in
EBRW. The choice rules may be viewed as alternative theories
that should be distinguished from each other or as alternative
strategies that are related by learning. Subjects may begin with
ECTVA and learn a more efficient strategy.

One possibility would be to divide the set of response counters

“into two—one for Task 1 and one for Task 2—and compare each

set separately with its own criterion. This would be easier if Task 1
and Task 2 were very different from each other. Experiment 3 and
Equation 17 suggest that similarity of response categories (overlap
in Bs) is more critical than stimulus similarity. Whether subjects
can learn to divide response sets in this manner is a question for
future research.

Different solution to the serial order problem. ECTVA pre-
vents perseveration of R1 by inhibiting all of the random-walk
counters and thereby inhibiting all possible responses. Models of
serial order typically prevent perseveration by inhibiting only the
response that was just executed, leaving the others active and
available to be selected in the next cycle (e.g., Bryden, 1967; Dell
et al., 1997; Estes, 1972; MacKay, 1987; Rumelhart & Norman,
1982). The difference may reflect level of skill: ECTVA applies to
novice PRP performance, whereas models of serial order usually
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apply to highly skilled behaviors, such as speaking and typing. It
may be possible that people impose serial order by inhibiting ail
responses early in practice and then learn to inhibit only the
just-executed response as they gain experience with the task.
Alternatively, ECTVA may work just as well if only the just-
executed response is inhibited. Preliminary simulations suggest
that the pattern of effects does not change much when this as-
sumption is changed.

ECTVA, RSB, and SRD

In the introduction of this article, we suggested that ECTVA
could be viewed as an elaboration of RSB and SRD or as a
competitive theory. At this point it may be more appropriate to
view ECTVA as an elaboration. ECTVA covers a small part of the
PRP literature in which S1 and S2 are both visual. The theory
would have to be extended considerably to deal with stimuli with
significant spatial or temporal structure. ECTVA says nothing
about early perceptual processes and late response-execution pro-
cesses (see Figure 2), and those processes play important roles in
PRP phenomena.

Viewed as a competitor, ECTVA seems to challenge RSB more
than SRD. ECTVA'’s assumption that stimulus selection and re-
sponse selection are cascaded (Ashby, 1982; McClelland, 1979)
contrasts with RSB’s assumption that they are discrete. The as-
sumption of discrete stages is essential to the locus of slack logic
that provides the theoretical foundation for RSB (Schweickert,
1978; Schweickert & Townsend, 1989; Townsend & Schweickert,
1989). The evidence for crosstalk from S2 to S1 chalienges RSB’s
assumption that response selection is serial and discrete. It sug-
gests that Task 2 response selection began before Task 1 response
selection was complete (also see Logan & Delheimer, in press;
Logan & Schulkind, 2000). If response selection were serial and
discrete, Task 2 response selection could not begin before Task 1
response selection finished (Townsend & Ashby, 1983). ECTVA
illustrates one interpretation of parallel response selection: Evi-
dence for all possible responses accumulates in the counters before
the random walk terminates. These challenges may stimulate RSB
theorists to develop more detailed theories of response selection,
and that would be good for the field. ECTVA may turn out to be
a special case rather than a competitor.

The inhibition of the random-walk counters provides the current
version of ECTVA with a way to salvage RSB’s assumption that
response selection is serial and discrete.® Crosstalk from S2 to S1
implies that information about S2 was available before R1 was
selected, but it does not imply that that information was used to
select R2. If all of the S2 information that builds up in the
random-walk counters is lost when the counters are inhibited so
none remains to influence R2 selection, R2 selection can be said to
begin after R1 selection. This would preserve the discrete-stage
assumption. If inhibition were almost complete, R2 selection may
be approximately discrete, not beginning in earnest until R1 se-
lection was over.

Inhibition of the random-walk counters need not always pre-
serve the discrete-stage assumption. The amount of inhibition can
vary from O to 100%, and the range of inhibition values that
preserves discreteness is parrower than the range that prevents
response perseveration. Explorations with the model show that the

serial order problem can be solved by inhibiting the counters by as
little as 30% (compared to 90% in our simulations). That amount
of inhibition (30%) produces a large amount of crosstalk, which
suggests a serious violation of the discreteness assumption. Future
research will be required to determine whether the amount of
inhibition subjects employ is enough to preserve RSB’s discrete-
stage assumption.

Set Switching

Research on set switching is still in its infancy, despite its
relatively long history in experimental psychology (dating to Jer-
sild, 1927). The current theories are not very detailed and not very
quantitative. They are more like hypotheses than theories.
ECTVA'’s account of set switching is tailored to the PRP situation,
but it could be extended easily to more typical set-switching
situations (e.g., Allport et al., 1994; Allport & Wylie, 2000;
DeJong, 2000; Jersild, 1927; Meiran, 1996; Rogers & Monsell,
1995). That is an important direction for future research.

Our interpretation of set-switching costs as reflecting the time
required to transmit a set of parameters from working memory to
TVA contrasts with that of Allport et al. (1994; also see Allport &
Wylie, 2000). Allport and his colleagues claim that set-switching
costs are due to aftereffects of previous task sets (task set inertia)
rather than the time required to instantiate the set. Their view could
be accommodated in ECTVA by assuming memory for previous
parameter settings. There are at least three possibilities: First,
interference could occur in TVA. Parameters from old task sets
may remain in TVA and alter the values of new parameters that are
transmitted to TVA. The current parameter values may be a
weighted average of the current input values and decaying values
from the previous task set. Second, interference may occur in
working memory. ECTVA assumes that task sets are represented
in working memory at the parameter level and the task level.
Interference in both kinds of representation could affect the in-
stantiation of the current task set. Finally, interference could occur
in long-term memory. Task sets are also represented in long-term
memory, and some of the set-switching costs may reflect interfer-
ence in retrieval from long-term memory rather than working
memory or TVA. It remains to be seen whether any of these
proposals has merit.

Our assumption that the TVA parameters for Task 1 are trans-
mitted from working memory to TVA after S1 appears is similar
to Rogers and Monsell’s (1995) view. They argued that some
aspects of set switching cannot begin until the relevant stimulus
appears (also see Ward, 1982). Our assumption that Task 2 pa-
rameters are transmitted as soon as R1 is executed would appear to
contradict this view. However, most PRP experiments use SOAs
short enough that S2 is presented before R1 occurs, so the set
switch occurs well after S2 is presented. Set switching may begin
before S2 is presented at the longest SOAs. That occurred at the
900-ms SOA in our simulations. At that SOA, some of the set-
switching costs were absorbed into the waiting time between R1
and S2.

¢ We are grateful to Hal Pashler for pointing this out and discussing its
implications.
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Our ideas about transmission time suggest a new interpretation
of DeJong’s (2000) claim that people do not prepare optimally for
a new task. DeJong analyzed RT distributions in conditions that
required set switching and showed that they were a mixture of two
distributions, one in which subjects are fully prepared and one in
which subjects are not at all prepared. Our assumption that set
switching (parameter transmission) takes time suggests that it may
be very difficult to prepare optimally for a new task. Subjects may
try to transmit all of the parameters before the relevant stimulus
occurs, but it is unlikely that all of the parameters will arrive in
TVA at the same time. They may learn, over practice, to trigger
transmission based on a more optimal signal event in TVA (e.g.,
the onset of the warning signal rather than the onset of S1), but
they may never get the parameters to arrive simultaneously.

We assumed parallel, unlimited-capacity transmission so that
the transmission time of the last parameter to be changed was the
maximum of the transmission times for all N parameters, and the
maximum transmission time increases with N (see Equation 18).
Our assumption of parallel, unlimited-capacity transmission also
predicts that the time required to transmit the first parameter
decreases as N increases. This follows because the transmission
time for the first parameter is the minimum of the transmission
times for all N parameters, and the expected value of the minimum
of N independent, unlimited-capacity transmission times decreases
as N increases (Logan, 1988). If the transmission times are dis-
tributed exponentially, then mean transmission time for the first
parameter to be transmitted is

1 11

ETwn) = 0= N3 (19)
Because the maximum increases with N (Equation 18) and the
minimum decreases with N (Equation 19), the parameters will not
arrive at TVA at the same time but rather they will arrive over a
period of time whose duration increases with N. The duration of
this period is given by the difference between Equation 18 and

Equation 19 and has the same form as Equation 18:

N N-1
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This fact about unlimited-capacity, parallel transmission im-
poses constraints on the executive’s attempts to time parameter
transmission so that all parameters are in place at the time the
relevant stimulus occurs. If N is large, the first parameters to be
transmitted may start to decay before the last few are transmitted,
and that may present other problems for the executive to solve.
Thus, preparation for a complex task set may never be optimal (cf.
Delong, 2000).

Theories of Executive Processing

ECTVA has several implications for theories of executive pro-
cessing. The first, discussed earlier, is the need for grounding a
theory of executive processing in a computational theory of sub-
ordinate processing. The second concerns the nature of task sets
and how the executive puts them in place. ECTVA conceives of a
task set as a set of parameter values sufficient to make TVA

perform goal-relevant categorizations. ECTVA instantiates the
task set by transmitting parameters to TVA. The task set is in place
when all of the parameters have been transmitted. More generally,
ECTVA conceives of task set in terms of parameter control. An
alternative perspective, drawn from the mind-as-digital-computer
analogy, is that a task set is a set of procedures (e.g., processing
stages) that are retrieved from memory and put into place much
like a program is copied from a disk into a computer’s memory
before it is executed. Logan (1980b) proposed an idea like this but
rejected it in favor of another alternative. Norman and Shallice
(1986) seem to fit this analogy when they talk about task sets
activating schemas. In our view, parameter control is the more
plausible alternative. It seems more likely that one brain area
controls another by modulating activity in the other area than by
copying something like a program into that other area (Duncan,
1996). Of course, plausibility is a weak criterion. It is limited
primarily by one’s imagination.

A third, more popular alternative is the idea that task sets
involve sets of stimulus-response mapping rules or elementary
productions in a production system (DeJong, 1995; Fagot &
Pashler, 1992; Logan, 1980b, 1985; McCann & Johnston, 1992;
Meyer & Kieras, 1997a, 1997b). Instantiating a task set means
preparing a set of rules to respond to the stimulus. Changing task
set means changing the set of rules. ECTVA incorporates this idea
in terms of task-level representations in working memory. Those
representations can be viewed as sets of rules. However, ECTVA
suggests that preparing and changing sets of rules is not sufficient
to instantiate or change a task set. The parameters that control the
subordinate must be derived from the rule and passed on to the
subordinate process. If ECTVA does not change the parameters in
TVA, the task set will not change.”

Modulation of Crosstalk by Task Set

Experiment 3 demonstrated that crosstalk between S2 and S1
was modulated by task set. Crosstalk occurred if the task set was
the same for S1 and S2 but not if the task set was different. Logan
and Schulkind (2000) found the same effects with magnitude and
parity judgments (see Figure 15). These effects are similar to
several effects in the literature that led researchers to propose the
idea that some processes were conditionally automatic (Bargh,
1992; DeJong, Liang, & Lauber, 1994; Logan, 1988). In the modal
view, some processes are automatic in the sense that they are
activated regardless of the subject’s beliefs and intentions (see
Kahneman & Treisman, 1984; Logan, 1988). Our data and data
before them suggest that some processes may become active
automatically only if they are consistent with the current task set.
Their automaticity is conditional on the task set. Smith (1979,
Smith, Theodor, & Franklin, 1983) found that semantic priming
occurred only if subjects treated the prime as a word. If they
treated it as a letter string, by searching for a particular letter in the

7 Once TVA parameters have been derived from the task-level repre-
sentation, transmitting them to TVA may be obligatory. That is an inter-
esting question for future research. Our point is that ECTVA adds two
critical steps to set switching that must go on after rules have been
switched: TVA parameters must be derived from the rules, and they must
be transmitted to TVA.
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word, there was no semantic priming (also see Chiappe, Smith, &
Besner, 1996; Henik, Friedrich, & Kellogg, 1983; McKoon &
Ratcliff, 1995; Stolz & Besner, 1996). Besner, Stolz, and Boutilier
(1997) showed that the Stroop effect could be eliminated (almost)
by coloring only one of the letters of the word (also see Bauer &
Besner, 1997).

The ECTVA analyses of crosstalk and the modulation of
crosstalk by task set provide some insight into these findings. We
interpret priming and Stroop effects as kinds of crosstalk (Logan,
1980a). If the categorizations for one task are relevant to (i.e.,
congruent with or incongruent with) the categorizations for an-
other task, crosstalk will be observed, following Equation 17 and
the ECTVA analysis in Figure 6. The main difference between the
PRP situation and Stroop and priming tasks lies in the SOAs used
or, alternatively, in terms of the interval between R1 and S2
(response-to-stimulus interval [RSI]). SOAs are typically shorter
in the PRP procedure, with most of the action happening in the
0-500-ms range, whereas SOAs in typical priming tasks range
from 250 to 2,000 ms. The RSIs in the PRP procedure are gener-
ally negative—S2 often occurs before R1—whereas the RSIs in
priming tasks are typically positive and on the order of 1,000
or 2,000 ms. In our view, these differences are not very important
with respect to the modulation of crosstalk by task set. The
differences determine the magnitudes of crosstalk effects (Logan,
1980a), but the presence or absence of crosstalk effects depends on
the similarity of task set, and that transcends RSI and SOA.

As with set switching, the modulation of crosstalk by task set in
Stroop and priming paradigms has not been accounted for very
well theoretically. Researchers believe that task set is important,
but until ECTVA there was no theoretical account of the modu-
lation of crosstalk by task set. As with set switching, it should be
relatively straightforward to extend ECTVA to deal with the
modulation of Stroop and priming effects by task set (cf. Logan,
1980a). That remains an important topic for future research.

Modularity in Theorizing

This article began with two challenges: generalize special-
purpose theories to cover new phenomena and specify the execu-
tive processes that control the special-purpose theories. ECTVA is
one specific response to these challenges. ECTVA shows that the
basic machinery of TVA can be generalized from single-task
studies of focused and divided attention to studies of dual tasks and
the PRP in particular. ECTVA runs TVA twice, once on each
stimulus. To control TVA’s behavior, we had to specify the
executive processes involved in changing set.

ECTVA is a modular theory. It is an amalgamation of different
components, and some components are more crucial than others.
TVA and EBRW are essential; we are less committed to the other
parts of the theory. For example, we said little about the CODE part
of TVA although CODE makes some very specific assumptions that
may prove to be false in future research (see Compton & Logan, 1993,
1999; Van Oeffelen & Vos, 1982, 1983). It should be possible to
replace CODE with another theory of perceptual organization. The
main requirement, from the perspective of ECTVA, is that the theory
of perceptual grouping should provide a number between 0 and 1 that
reflects the proportion of the features of an object that can be sampled
given a particular perceptual organization.

Similarly, our assumption that parameter transmission is parallel
and unlimited in capacity is not essential to the theory. The main
requirement for a theory of set switching is that the time required
to transmit the set of parameters increases with the number of
parameters in the set. A theory of serial transmission would predict
a linear increase. Nothing in our data or our theorizing discrimi-
nates serial from parallel parameter transmission.

Modular theorizing implies that parts can be replaced. It also
implies that parts can be decomposed or unpacked, as molecules
can be broken down into atoms. It may prove worthwhile to
unpack some of ECTVA’s parameters. Nosofsky (1984, 1986,
1988) and Nosofsky and Palmeri (1997) decomposed ECTVA’s 1
parameter into a representation of similarity as distance in multi-
dimensional similarity space. This decomposition proved to be
very powerful in accounting for categorization judgments and for
the relations between categorization and recognition and between
categorization and identification (also see Ashby & Maddox,
1993). A similar sort of decomposition could be incorporated into
ECTVA to increase its power and scope (see Logan, 2001).

A deeper issue underlying modularity is the falsifiability of
ECTVA. If none of the theories that comprise it is critical, how can
the theory as a whole be falsified? This is an important question,
but it is one that we prefer to put off until some time in the future
when we have discovered what ECTVA can do and what config-
urations of component theories seem necessary to account for a
broad range of phenomena. It would be easy to falsify some of the
specific assumptions that go into ECTVA (e.g., that the distribu-
tion of finishing times is exponential), but that may lead us to
reject a weak version of the theory when a stronger version sits
around the conceptual corner, waiting to be discovered. For the
present, we prefer to build rather than to destroy (Newell, 1990).
We are more interested in what ECTV A can do than what it cannot
do. However, ECTVA is built from powerful components. TVA
and EBRW provide excellent quantitative accounts of many dif-
ferent phenomena in the attention literature and the categorization
literature, so the components of our theory have not gone untested.

The virtue of modularity in theorizing is the possibility of
developing a general theory of cognition that is integrative and
cumulative (Anderson, 1993; Logan, 2001; Meyer & Kieras,
1997a; Newell, 1990; Posner, 1982). The divide-and-conquer strat-
egy that dominates much of current research has clarified different
aspects of the blooming, buzzing confusion that surrounds us, but
it has not yet made clear how the different aspects are related.
Viewed collectively, the special-purpose theories may be as con-
fusing as the bloom and the buzz they were meant to clarify. We
proposed one specific integration, combining TVA and EBRW to
form ECTVA. Some of the details may be wrong, but we hope that
the basic idea—that an executive process programs a programma-
ble subordinate—may prove useful in future attempts at integra-
tion.
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Appendix A

Simulations of Parallel and Serial Processing

To simulate serial and parallel processing in the theory of visual atten-
tion (TVA), we assumed there were two stimuli, S1 and S2, that each took
two values. S1 was represented by two m values: n(x, 1) and n(x, 2). S2
was also represented by two m values: n(y, 1) and n(y, 2). On each trial,
one value was “turned on” for each stimulus, by setting the corresponding
7 value high (e.g., to 10.0). The other value of each stimulus was “turned
off” by setting 7 low (e.g., to 1.0). We used all four possible combinations
of S1 and S2, simulating each one 40,000 times.

We set B8 high (to 1.0) for both values of each stimulus. To generate
processing rates, we multiplied 7 values by 8 values and multiplied that
product by the attention weights on the relevant objects, using relative
attention weights (Equation 7) if TVA’s capacity was limited and absolute
attention weights (Equation 6) if TVA’s capacity was unlimited. The
attention weights were determined by two priority parameters, m,,, and
Tponom» fOr the stimulus-set categories “top” and “bottom,” respectively,
and by four m values for the similarities between S1 and S2 and the
stimulus-set categories (i.e., (S, ropl, m(SI, bottom], m[S2, top], and
n[S2, bottom}). To present S1 in the top position and S2 in the bottom
position, we set n(S1, top) and (52, bottom) high (i.e., 10.0) and n(S1,
bottom) and 7(S2, top) low (i.e., to 1.0). The feature-catch parameters, c,
were set to 1.0, so they disappeared from Equations 13 and 14.

We modeled serial and parallel processing by manipulating the attention
weights through the priority parameter, . In parallel processing, both ,,,
and m,,,,.,, were set high (i.e., to 1.0) so that S1 and S2 would have equal
attention weights (both = 0.5). In serial processing, we set 7, high (1.0)
and Ty, u0m 10w (0.1) to select S1 before S2. Then, after R1 was selected,
we set 7, low (0.1) and ., high (1.0) to select S2. In all other respects
(i.e., in terms of ns and Bs), serial processing was the same as parallel
processing.

We manipulated capacity limitations in response selection by varying o
in Equation 15. We set @ to 0.3 when response-selection capacity was
limited and to 0.0 when response-selection capacity was unlimited. We
held X constant at 3.0 because this value produced human-like accuracies.

In each simulated trial, we began by setting the random-walk counters
to 0. Then we calculated processing rates from 7s, Ss, and s, using
Equation 7 if TVA capacity was limited and Equation 6 if TVA capacity
was unlimited. We used the processing rates to compute categorization
probabilities, following Equation 13, and we used those probabilities to
choose a categorization at random. The counter corresponding to the
chosen categorization was incremented by 1, and the threshold was tested
by comparing the number of categorizations in the highest counter with the
number in the second highest counter and determining whether the differ-
ence equaled the criterion, K. If the difference was smaller than the
criterion, the process repeated. Another categorization was chosen and
added to its counter, and the threshold was tested again. If the difference
was equal to or greater than the criterion, K, the response corresponding to
that counter was “executed.” As soon as the first response was executed,
the counters were inhibited completely (all of their values were multiplied
by 0), 7 was changed if processing was serial, and processing rates were
calculated once again. The chosen responses were compared with the
correct responses to score accuracy. Order mattered, as discussed in the
text of the article.

We simulated Reaction Time 1 (RT1) by simulating T,,,, (Equation 15)
on each step of the random walk and summing the values over the number
of steps required to terminate the walk (to exceed K). Like Nosofsky and
Palmeri (1997), we held a constant and let T,,, (Equation 2, i.e., 1/23 v(z,
7)) vary randomly. That is, we sampled a value at random from an
exponential distribution with a rate parameter equal to the reciprocal of
Equation 2 (ie., 33 v(z, j)), and we added the sampled value to a to
produce T,,,, for each step until the walk terminated. We simulated RT?2 in
a similar manner. Because S1 and S2 were simultaneous (stimulus onset
asynchrony = 0), RT2 included RT1 as well as the time required to choose
the second response. Finally, we transformed model time into milliseconds
using a regression equation with an intercept and a slope that were the
averages of the regression equations used to simulate the experiments:
RTobserved =455 + 122(RTsimulated)'

(Appendixes continue)
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Appendix B

Method and Inferential Statistics for Experiment 1

Subjects

The subjects were 16 volunteers from the university community who
were paid $10 for completing two sessions.

Apparatus and Stimuli

The stimuli were displayed on Gateway 2000 Crystalscan 1024 NI
monitors, controlled by Gateway 2000 486 computers. Responses to the
first stimulus (S1) were collected from the period (.) and slash (/) keys;
responses to the second stimulus (S2) were collected from the z and x keys.
Timing was accurate to 1 ms. The stimulus onset asynchronies (SOAs)
were 0, 100, 300, or 900 ms. The stimuli were the digits 1, 2, 3, 4, 6, 7, 8,
and 9 (5 was excluded). ’

The fixation display consisted of four dashes (-) arranged in two rows
(see Figure 1). Each row contained two dashes separated by three blank
spaces. The top row began on row 13 and column 37 of the 24 row X 80
column IBM text screen. The bottom row began on row 14 and column 37.
The second display contained two digits if SOA was 0 and one if SOA was
greater than 0. In the one-digit display the character appeared in the top row
indicated by the fixation field, in a position that was centered between the
two dashes (row 13, column 38). In the two-digit display the top digit
remained the same and appeared in the same position. The bottom char-
acter appeared immediately below it, in row 14, column 38. Viewed at a
distance of 60 cm, the fixation display subtended 1.53 X 1.43 degrees of
visual angle. Each digit subtended 0.48 X 0.28 degrees of visual angle. The
fixation display was exposed for 500 ms. If SOA was greater than 0, the
first digit was exposed for SOA ms, and then the second digit appeared,
and the two remained on the screen for 1,000 ms. The display was then
extinguished and replaced by a blank screen for a 3,500-ms intertrial
interval.

Procedure

Each subject served in two sessions, one in a dual-task condition and
one in a single-task condition. The basic design for each session
involved 256 trials (8 digits for S1 X 8 digits for S2 X 4 SOAs). There
were two replications of this design, for a total of 512 trials each
session. In the dual-task condition, subjects responded to both digits,
using their right hand for the top digit (index finger on period key for
greater than 5, middle finger on slash key for less than 5) and their left
hand for the bottom digit (index finger on x for greater than 5, middle
finger on z for less than 5). In the single-task condition, the displays
were exactly the same (i.e., both S1 and S2 were presented on each
trial), but subjects responded only to the top digit, which appeared first
when SOA was greater than 0, using the index and middle fingers of
their right hand to report magnitude. Half of the subjects had the
dual-task session before the single-task session, and the other half had
the opposite.

Subjects were given verbal instructions that told them which keys to
press in response to S1 and S2. Task 1 was emphasized in the dual-task
conditions. Subjects were told to respond to it as quickly as possible and
not to wait for S2. They were told to rest their hands on the response keys
throughout the experiment. They were allowed brief rest breaks throughout
the experiment.

Design

Mean reaction times (RTs) and accuracy scores were analyzed sep-
arately for Responses 1 and 2 (R1 and R2). The data for R1 were

analyzed in 2 (single vs. dual task) X 2 (congruency: same or differ-
ent) X 4 (SOA: 0, 100, 300, or 900 ms) analyses of variance
(ANOVAs). The data for R2 were analyzed in 2 (congruency: same or
different) X 4 (SOA) ANOVAs. Unless stated otherwise, we used p <
.05 as our criterion for statistical reliability.

Results

The ANOVAs on the RT data supported the conclusions drawn in the
text of the article. The basic psychological refractory period effects
were evident as a main effect of SOA in the RT2 ANOVA, F(3, 45) =
228.61, MSE = 3,333.49, and a null effect of SOA in the RT1 ANOVA,
F(3,45) = 1.11, MSE = 8,588.44. The concurrence cost was evident in
a main effect of dual versus single in the RT1 ANOVA, F(l,
15) = 58.11, MSE = 35,548.97. Crosstalk effects on RT1 were
evidenced by a main effect of congruency, F(1, 15) = 5.41],
MSE = 2,017.66. The interaction between dual versus single task and
congruency was significant, F(1, 15) = 7.72, MSE = 2,135.47. Planned
comparisons showed that the congruency effect was significant in
dual-task RT1, F(1, 15) = 12.60, MSE = 2,135.47, but not in single-
task RT1 (F < 1). The only other significant effect in the RT1 analysis
was the interaction among dual versus single task, congruency, and
SOA, F(3, 45) = 5.21, MSE = 907.57. In the RT2 ANOVA, there was
also a main effect of congruency, F(1, 15) = 82.62, MSE = 3,134.93,
and an interaction between congruency and SOA, F(3, 45) = 13.25,
MSE = 1,718.96.

The accuracy data are presented in Table B1. The accuracy analyses
revealed nothing inconsistent with the RT analyses. In the R1 analysis the
only significant effects were the main effect of dual versus single task, F(1,
15) = 7.50, MSE = 75.20; the main effect of SOA, F(3, 45) = 4.30,
MSE = 5.68; and the interaction between dual versus single task and SOA,
F(3, 45) = 9.67, MSE = 5.67. In the R2 analysis, only the main effect of
SOA was significant, F(3, 45) = 9.59, MSE = 7.92.

We used all possible combinations of digits for S1 and S2, so some trials
involved identical stimuli, some involved response repetitions, and some
involved incongruent stimuli. Equation 17 says that crosstalk depends on
response repetition rather than stimulus repetition, so we divided our data
into identical, repetition, and incongruent trials to test that prediction. For
the single-task condition, RTs on identical trials (M = 571 ms) were
slightly siower than RTs on repetition (M = 566 ms) and incongruent trials
(M = 565 ms). For dual-task RT1, identical trials were faster than repeti-
tion trials, which were faster than incongruent trials (Ms = 719, 736, and
760 ms, respectively). The same was true for dual-task RT2 (M for
identical trials = 706 ms, M for repetition trials = 759 ms, and M for

Table Bl

Mean Percentage Correct in Experiment 1 as a Function of
Single- Versus Dual-Task Conditions, Congruency,

and Stimulus Onset Asynchrony (SOA)

Single task Dual task
SOA
(ms) Congruent Incongruent Congruent Incongruent
0 96.2 96.9 94.9 94.9
100 97.1 98.1 95.4 93.4
300 972 98.3 95.4 95.6
900 98.8 97.9 94.6 95.8
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incongruent trials = 835 ms). We assessed the statistical reliability of these
effects by computing Fisher’s least significant difference test (p < .05) for
the highest order interaction in a 3 (single task vs. RT1 vs. RT2) X 3
(identical vs. repetition vs. incongruent) X 4 (SOA: 0, 100, 300, 900 ms)
ANOVA. We used the critical value of 25 ms to compare RTs in the
identical and repetition conditions against RTs in the incongruent condi-
tion, to see if the congruency effect depended on stimulus repetition. By
this criterion, none of the congruency effects was significant at any SOA

in the single-task condition. In the RT1 data, the congruency effect was
significant at the 0- and 100-ms SOA for the repetition condition (differ-
ences = 47 and 31 ms, respectively) and at the 0- and 100-ms SOA for the
identical condition (differences = 99 and 76 ms, respectively). In the RT2
data, the congruency effect was significant at the 0-, 100-, and 300-ms
SOAs for the repetition condition and at all SOAs for the identical condi-
tion. Thus, the congruency effect can be obtained in both RT1 and RT2
data without stimulus repetition.

Appendix C

Simulation of Experiment 1

We simulated Experiment 1 using the same-task-set parameter values
that appear in Table C1. The dual-task conditions used those parameters
exactly. The single-task conditions used the same 7 values as the dual-task
conditions, but the 8 and 7 parameters were different. Single-task s were
set high (1.0) for Stimulus 1 (S1) magnitude, low (0.1) for S1 parity, and
low (0.1) for both dimensions of S2. We set 7 high (1.0) for S1 and low
(0.1) for S2 (i.e., m,,, high and 7,,,,,, low), and the simulated single-task
trial ended when Task 1 was finished. We used four stimulus onset
asynchronies (SOAs; 0, 1.14, 3.41, and 10.23) that corresponded to 0, 100,

Table C1

300, and 900 ms in real time. We simulated 10,000 trials in each of the 16
possible combinations of S1 and S2 for each of the four SOAs in single-
task and dual-task conditions.

We implemented set-switching times and response competition in these
simulations. In singie-task conditions, we assumed that no parameters had
to be changed before each trial, because 7 and 8 parameters from the last
trial could carry over to the next one. In dual-task conditions, we assumed
that one parameter had to be changed before Task 1 could begin (i.e., 7 had
to be set for S1). To implement this, we took one sample from an

Values of the TVA Parameters Used in the Simulations of Crosstalk and Set Switching

TVA parameter S1

TVA parameter S2

Same task set

(81, large) 10 10 1 1
n(S1, small) 1 1
n(S1, odd) 10 1 10 1

782, large) 10 10 1 1
7(S2, small) 1 1 10 10
n(S2, odd) 10 1 10 1

7(S1, even) 1 10 1 10 7(S2, even) 1 10 1 10
Brarge 1.0 1.0 1.0 1.0 Biarge 1.0 1.0 1.0 1.0
mall 1.0 1.0 1.0 1.0 Bman 1.0 1.0 1.0 1.0
Boaa 0.1 0.1 0.1 0.1 Bosa 0.1 0.1 0.1 0.1
Beven 01 01 01 01 Beven 61 01 01 o0l
n(S1, top) 10 10 10 10 n(S2, top) 1 1 1 1
n(S1, bot) 1 1 1 1 7(S2, bot) 10 10 10 10
Top 1.0 1.0 1.0 1.0 Thop 0.1 0.1 0.1 0.1
Tyor 0.1 0.1 0.1 0.1 Tot 1.0 1.0 1.0 1.0
Different task set
7(S1, large) 10 10 1 1 (82, large) 10 10 1 1
7(S1, small) 1 1 10 10 782, small) 1 1 10 10
7(S1, odd) 10 1 10 1 7(8$2, odd) 10 1 10 1
7(S1, even) 1 10 1 10 752, even) 1 10 1 10
Brarge 1.0 1.0 1.0 1.0 Blarge 0.1 0.1 0.1 0.1
Baman 1.0 1.0 1.0 1.0 Beman 0.1 0.1 0.1 0.1
Boaa 0r 01 01 01 Boaa 10 10 10 10
o ven 0.1 0.1 0.1 0.1 Beven 1.0 10 1.0 1.0
7(S1, top) 10 10 10 10 (82, top) 1 1 1 1
7(S1, bot) 1 1 1 1 7(S2, bot) 10 10 10 10
Meop 1.0 1.0 1.0 1.0 Top 0.1 0.t 0.1 0.1
oot 0.1 0.1 0.1 0.1 oot 1.0 1.0 1.0 1.0

Note. Each row represents a parameter, and each column of numbers represents the values of the parameters
for a particular instantiation of Stimulus 1 (S1) or S2. In ali of the simulations, a was held constant at 0.3, X was
held constant at 3.0, and the response-counter inhibition parameter was held constant at 0.9. TVA = theory of

visual attention; bot = bottom.

(Appendixes continue)
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exponential distribution with a rate parameter of 1.0 and added it to
Reaction Time 1 (RT1). We assumed that one parameter had to be changed
before Task 2 could begin (i.e., 7 had to be set to select S2). We assumed
that the Bs for Task 1 and Task 2 were in place before S1 and S2 appeared
and that the Bs for S1 remained in place throughout Task 2. We assumed
that the response counters had to be inhibited (their values multiplied
by 0.1) before Task 2 could begin, and we assumed this went on in parallel
with parameter changing. The time to inhibit the counter was sampled from
the same exponential distribution that was used for the parameter changing
times. Set-switching time for Task 2 was the maximum of the time to
change 7 and the time to inhibit the counters. To implement this, we
sampled two values from the same exponential distribution and took the
largest value as the set-switching time. We assumed that set switching
began as soon as R1 was executed, so when Task 2 began RT2 was set to
RT1 — SOA + (set switching and counter inhibition time) or O, whichever
was greater. The rate parameter for the set-switching and counter-inhibiting
exponential distribution was fixed at 1.0 for all simulations.

In order to scale the simulated RTs to the data from Experiment 1, we
first correlated the simulated and observed RTs at SOA = 0. We used the
regression equation from this correlation to determine the SOA values we
used to simulate SOA > 0. The correlation between simulated and
observed RTs at SOA = 0 was 0.993. The regression equation was
RT pservea = 436 + 88(RT i muiaeq)- Using this equation, we simulated the

Table C2

Accuracy Data (Percentage Correct) for the Simulations of
Experiment 1 as a Function of Single- Versus Dual-Task
Conditions, Congruency, and Stimulus Onset Asynchrony (SOA)

Single task Dual task Rl Dual task R2
SOA
(ms) Cong Incong Cong Incong Cong Incong
0 99.9 99.8 99.9 97.7 99.9 91.8
100 99.9 99.9 99.9 98.9 99.9 91.7
300 99.9 99.9 99.8 99.6 99.9 91.7
900 99.9 99.9 99.8 99.8 99.9 91.6

Note. R = response; Cong = congruent; Incong = incongruent.

100-, 300-, and 900-ms SOAs with simulated SOAs of 1.14, 3.41,
and 10.23. Then we used the regression equation once again to transform
the simulated RTs to the millisecond scale. Finally, we correlated the
simulated and observed RTs over all conditions and SOAs. The result was
r-= .9561. The mean simulated RTs, transformed to the millisecond scale,
appear in Figure 11. The simulated accuracies appear in Table C2.

Appendix D

Method and Inferential Statistics for Experiment 2

Subjects

There were 96 subjects, divided into six groups of 16. The subjects were
students from an introductory psychology course who participated to fulfill
course requirements.

Apparatus and Stimuli

The stimuli were displayed on the same computers used in the previous
experiments. Responses to the first stimulus were collected from the
comma (,), period (.), and slash (/) keys; responses to the second stimulus
were collected from the z, x, and ¢ keys. The stimulus onset asynchronies
(SOAs) were 0, 100, 300, or 900 ms.

For half of the subjects, the color was presented first; for the other half,
the word was presented first. The color bars were formed by concatenating
seven block characters (ASCII No. 219). They appeared in rows 12 and 14
of the IBM text screen, beginning in column 34. They were colored red
(IBM 12), blue (IBM 9), or green (IBM 10). The words RED, BLUE, and
GREEN appeared in white (IBM 15) between the color bars, in row 13 of
the IBM text screen. The words were left justified, beginning in column 35.
Viewed at a distance of 60 cm, each color bar subtended 0.76 X 2.10
degrees of visual angle. The entire color-bar and word display sub-
tended 2.29 X 2.10 degrees. The words subtended 0.48 X 0.86 (RED), 1.15
(BLUE), or 1.43 (GREEN) degrees.

Each trial involved three displays if SOA was 0 and four displays if SOA
was greater than 0. The first display in all conditions contained a plus sign
centered in the screen (row 13, column 37) to serve as a fixation point and
a warning stimulus. It was exposed for 500 ms. Then it was extinguished
and replaced immediately by Stimuli 1 and 2 (S1 and S2) if SOA was 0 or
by S1if SOA was greater than 0. If SOA was zero, S1 and S2 were exposed
for 1,000 ms, and then the screen went blank for a 3,500-ms intertrial
interval. If SOA was greater than 0, S1 remained exposed until SOA ms
elapsed, and then a display containing both S1 and S2 was exposed

Table D1 )

Mean Percentage Correct in the Color and Word Tasks of
Experiment 2 as a Function of Single- Versus Dual-Task
Conditions, Congruency, and Stimulus Onset Asynchrony (SOA)

SOA (ms) Single 1 Single 2 Dual 1 Dual 2

Color task: Congruent

0 97.7 96.0 92.8 93.0

100 97.7 94.2 92.6 91.9

300 97.8 94.8 914 91.8

900 98.2 95.9 92.0 92.3
Color task: Incongruent

0 96.8 951 89.8 87.6

100 98.3 95.4 90.1 9L.1

300 98.1 95.4 91.3 89.1

900 978 96.0 89.4 89.6
Word task: Congruent

0 96.9 98.5 93.0 92.8

100 98.7 97.8 91.9 92.6

300 97.6 97.9 91.8 91.4

900 98.8 98.1 92.3 92.0
Word task: Incongruent

0. 97.4 97.3 87.6 89.8

100 98.1 98.0 91.1 90.1

300 98.1 98.1 89.1 91.3

900 98.7 98.4 89.6 89.4
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Table D2
Results of Analyses of Variance on Reaction Times for the Color
and Word Tasks in Experiment 2

Effect MSE df F

Color responses

Dual vs. single (D) 347,143.98 1, 60 78.58**
Task 1 vs. Task 2 (T) 347,143.98 1,60 1.04
DXT 347,143.98 1,60 1.97
Congruency (C) 5,025.60 1,60 295.45**
CxXD 5,025.60 1,60 166.88**
CXT 5,025.60 1,60 41.13%*
CXDXT 5,025.60 1, 60 16.01*+*
SOA (S) 6,891.54 3,180 63.69%*
SXD 6,891.54 3,180 40.31%*
SXT 6,891.54 3,180 94.78**
SXDXT 6,891.54 3,180 65.57**
CXxS 2,131.44 3,180 51.53%*
CXSXD 2,131.44 3,180 36.63**
CXSXT 2,131.44 3, 180 0.31
CXSXDXT 2,131.44 3,180 2.26
Word responses

Dual vs. single 409,329.13 1,60 60.02%*
Task 1 vs. Task 2 409,329.13 1,60 0.01
DXT 409,329.13 I, 60 0.03
Congruerncy 6,776.28 1,60 180.59**
CXD 6,776.28 1, 60 122.92%*
CXT 6,776.28 1,60 6.50*
CXDXT 6,776.28 1,60 0.68
SOA 9,927.43 3,180 39.65**
SXD 9,927.43 3,180 23.77%*
SXT 9,927.43 3,180 64.96%*
SXDXT 9,927.43 3,180 42.43%*
CXxS 2,179.84 3,180 54.06**
CXSXD 2,179.84 3,180 44.26%*
CXSXT 2,179.84 3,180 0.45
CXSXDXT 2,179.84 3,180 0.63

Note. SOA = stimulus onset asynchrony.
*p < .05. **p <Ol

for 1,000 ms. The displays looked as if S1 remained on the screen for the
whole trial, being joined by S2 after the SOA elapsed.

Procedure

The basic design involved 36 trials: three colors (or words) for S1 X
three words (or col8rs) for S2 X four SOAs (0, 100, 300, or 900 ms). All
possible combinations of colors and words were used with equal frequency,
so one third of the trials were congruent, and two thirds were incongruent.
The experiment consisted of 12 replications of the basic 36-trial design, for
a total of 432 trials.

There were six groups of subjects. For three groups (i.e., half of the
subjects), the color bars appeared before the word (if SOA > 0), while for
the other three groups, the word appeared before the color bars. Within
each set of three groups, one group (the dual-task group) responded to both
St and S2, one group (the single-task SI group) responded to S1 and
ignored S2, and one group (the single-task S2 group) responded to S2 and
ignored S1.

Subjects always responded to S1 with their right hand and to S2 with
their left hand, even in the single-task condition (i.e., single-task subjects
who responded to S1 did so with their right hands; single-task subjects who
responded to S2 did so with their left hands). The assignment of keys to

stimuli was counterbalanced between subjects. There were four mapping
rules: RBG-RBG, RBG-GBR, GBR-GBR, and GBR-RBG, where R is
red; G is green; B is blue; and the left-to-right order corresponds to key
presses from the left ring, left middle, left index, right index, right middle,
and right ring fingers.

Design

Mean reaction times (RTs) and accuracy data were analyzed in 2 (dual
vs. single task) X 2 (Task 1 vs. Task 2) X 2 (congruent vs. incongru-
ent) X 4 (SOA: 0, 100, 300, or 900 ms) analyses of variance (ANOV As).
Data from the color naming task were analyzed separately from the data
from the word reading task. Thus, Task 1 versus Task 2 was a between-
subjects factor. Subjects who responded to the word for Task 1 and the
color for Task 2 contributed their Task 1 data to the word analysis and their
Task 2 data to the color analysis. Dual versus single task was also a
between-subjects factor. Stroop congruency and SOA were within-subjects
factors.

Results

The accuracy data from Experiment 2 are presented in Table D1. The
ANOVAs on the RT data and the accuracy data are presented in Table D2.

Table D3
Results of Analyses of Variance on Accuracy Scores for the
Color and Word Tasks in Experiment 2

Effect MSE df F

Color responses

Dual vs. single (D) 174.60 1,60 23.00%*
Task 1 vs. Task 2 (T) 174.60 1, 60 1.47
DXT 174.60 1,60 0.78
Congruency (C) 23.44 1,60 7.91%*
CXD 23.44 1, 60 8.86%*
CXT 23.44 1,60 0.07
CXDXT 23.44 1, 60 0.43
SOA (S) 11.37 3, 180 0.27
SXD 11.37 3,180 0.69
SXT 11.37 3,180 045
SXDXT 11.37 3,180 0.78
CXS 12.94 3,180 2.54
CXSXD 12.94 3,180 0.22
CXSXT 12.94 3,180 0.85
CXSXDXT 12.94 3,180 0.49
Word responses
Dual vs. single 147.16 1,60 43.15%*
Task 1 vs. Task 2 147.16 1, 60 0.03
DXT 147.16 1,60 0.03
Congruency 22.94 1, 60 8.66%*
C XD 22.94 1, 60 8.45%*
CXT 22.94 1, 60 0.13
CXDXT 22.94 1,60 0.34
SOA 10.08 3,180 0.99
SXD 10.08 3,180 0.65
SXT 10.08 3,180 1.14
SXDXT 10.08 3,180 0.05
CXS 11.47 3,180 1.61
CXSXD 11.47 3,180 0.82
CXSXT 11.47 3,180 0.32
CXSXDXT 11.47 3,180 1.60

Note. SOA = stimulus onset asynchrony.
** p < 0l

(Appendixes continue)
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The basic psychological refractory period results were evidenced in the
main effect of SOA and the interactions between SOA and Task 1 versus
Task 2 and between SOA and dual versus single task, which were highly
significant.

Concurrence costs were evident in the main effect of dual versus
single task, which was highly significant for both color and word
responses. The concurrence costs in RT1 were supported by highly
significant contrasts based on the error term for the interaction between
dual versus single task and Task 1 versus Task 2: for colors, F(1,
180) = 27.82, MSE = 347,143.98; for words, F(1, 180) = 31.39,
MSE = 409,329.13.

Crosstalk was evidenced by the main effect of congruency, which was
significant for both color and word responses. The greater crosstalk in dual-

than in single-task conditions is evidenced by the interaction between
congruency and dual versus single task, which was significant in both
analyses. The theoretically important crosstalk effects on dual-task RT1
were evidenced by contrasts based on the error term from the interaction
among congruency, dual versus single task, and Task 1 versus Task 2. The
contrast was highly significant for colors, F(1, 60) = 96.95,
MSE = 5,025.60, and for words, F(1, 60) = 124.56, MSE = 6,776.28.
Finally, Fisher’s least significant difference test for p < .05 was computed
from the highest order interaction (df = 180). By this criterion, differences
larger than 16 ms were significant in each data set.

The ANOVAs on the accuracy data are presented in Table D3. The
accuracy ANOVAs were consistent with the RT ANOVAs. There was no
suggestion of a speed—accuracy tradeoff.

Appendix E

Simulation of Experiment 2

In simulating Experiment 2, we represented only one dimension for each
stimulus, and we used different, nonoverlapping dimensions for colors and
words. Thus, if Stimulus 1 (S1) was the word “red,” 7(S1, red) would be
set high (to 10.0), and 7(S!, blue) and n(Si, green) would be set low
(to 1.0). If S2 was the color green, n(S2, green) would be set high (to 10.0),
and 71(S2, red) and n(S2, blue) would be set low (to 1.0). As before, w(x,
i)s were calculated separately for each stimulus but were combined in the
calculation of categorization probability, as in Equation 17. Thus, there was
no overlap between tasks in stimulus representation, but there was overlap
at the level of categorization.

We simulated dual-task conditions in the serial mode. We set 8 for
Task 1 and Task 2 categorizations high (1.0) during both tasks. We ensured
serial processing by setting 7 high (1.0) for S1 and low (0.1) for S2 during
Task 1 and low (0.1) for St and high (1.0) for S2 during Task 2.

We simulated single-task responses using the same m values as the
dual-task simulations. To simulate responses to S1, we set 3 high (1.0)
for S1 classifications during Task 1 and low (0.1) otherwise. To respond
to S1, we set o high (1.0) for S1 and low (0.1) for S2. In all other
respects, single-task responses to S1 were simulated in the same way as
dual-task responses to S1, except that no parameters were changed
before S1 in the single-task condition (vs. one in the dual-task condi-
tion), and the response selection addressed three counters (vs. six in the
dual-task condition).

We simulated single-task responses to S2 by setting 8 high (1.0) for 52
categorizations and low (0.1) for all others and by setting 4 high (1.0) for
$2 and low (0.1) for S1. Our simulations began with the presentation of S1
if the stimulus onset asynchrony (SOA) was greater than 0 and with S1 and

Table E1

S2 if SOA was 0. If SOA was greater than 0, we let the counters
accumulate categorizations throughout the SOA, although the rate was
reduced because 3 was low for S1 categorizations and 7 was low for S1.
When S2 was presented, the counters were inhibited, as they were before
dual-task responses to S2, and the counters accumulated categorizations
until a response was selected. There was no set-switching time added to
single-task RT2; o and B remained the same throughout.

We simulated performance at four SOAs (0, 0.57, 1.72, and 5.17 model
units, which corresponded to 0, 100, 300, and 900 ms) in ali nine combi-
nations of colors and words. One third of the simulated trials were con-
gruent (color = word), and two thirds were incongruent (color # word).
We simulated 10,000 trials in each combination of these conditions. We
ran three separate simulations: one in dual-task conditions, one in single-
task conditions responding to S1, and one in single-task conditions re-
sponding to S2.

We set SOASs by correlating observed and predicted reaction times (RTs)
at SOA = 0. The correlation between color responses and ECTVA
predictions was .9704; the regression equation was RT perveq =
372 + 175(RT muaeq)- The correlation between word responses and
ECTVA was .9269, and the regression equation was RT ycerveq = 473 +
149(R T uiaea)- We used the regression equation from the color correla-
tion to generate SOAs and predicted RTs in milliseconds. The full set of
predicted RTs, depicted in Figure 11, were correlated strongly with the
color data (r = .9375) and the word data (r = .8797). The correlation
between the color data and word data was r = .9816. The predicted
accuracy scores are presented in Table El.

Accuracy Data (Percentage Correct) for the Simulations of Experiment 2 as a Function of
Single- Versus Dual-Task Conditions, Congruency, and Stimulus Onset Asynchrony (SOA)

R1 single R2 single R1 dual R2 dual

SOA
(ms) Cong Incong Cong Incong Cong Incong Cong Incong

0 99.9 99.8 99.9 99.8 99.8* 97.7 99.8 91.8
100 99.8 99.8 99.6 99.1 99.8 98.7 99.8 92.2
300 99.8 99.8 99.6 99.1 99.8 992 99.8 92.2
900 99.8 99.9 99.7 98.9 99.8 99.7 99.8 922
Note. R1 and R2 = Responses 1 and 2; Cong = congruent; Incong = incongruent.
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Appendix F

Method and Inferential Statistics for Experiment 3

Subjects

Sixteen subjects participated in this experiment. All were undergraduate
students who were native speakers of English. Each subject was paid $20
to participate in four sessions.

Apparatus and Stimuli

The apparatus was the same as in Experiment 2. Subjects responded to
the top stimulus by pressing the period or slash key and to the bottom
stimulus by pressing the z or x key. Stimulus onset asynchrony (SOA)
was 0, 400, or 1,000 ms.

The stimuli consisted of 96 pictures taken from Snodgrass and Vander-
wart (1980) and 96 words that named the objects. They were drawn in
black on a white background. Half of the pictures were of animals, and half
were of nonanimals. The animal names were written in lowercase. They
had a mean length of 5.3 letters (SD = 1.92); a mean written frequency
of 28.9 per million (SD = 50.55; Francis & Kucera, 1982); and subtended,
on average, 0.8 degrees vertically (SD = 0.08 degrees) and 3.4 degrees
horizontally (SD = 1.30 degrees), viewed at a distance of 60 cm. Nonani-
mal names had a mean length of 5.3 letters (SD = 1.89) and a mean written
frequency of 28.8 per million (SD = 28.53). On average, nonanimal names
also subtended 0.8 degrees vertically (SD = 0.07 degrees) and 3.4 degrees
horizontally (SD = 1.27 degrees). The mean size of the animal pictures
was 3.6 degrees vertically (SD = 0.88 degrees) and 3.4 degrees horizon-

Table F1

Accuracy for R1 and R2 in the Form Judgment Tasks of
Experiment 3 as a Function of Stimulus Onset Asynchrony
(SOA), Task Set, Form Congruence, and Animacy Congruence

Form cong Form incong
SOA Animacy Animacy Animacy Animacy
(ms) cong incong cong incong
R1: Same task set
0 93.8 94.7 96.4 95.8
400 96.9 95.8 97.8 97.5
1,000 97.8 97.7 98.6 97.2
R1: Different task set
0 93.8 92.8 93.0 92.0
400 95.0 93.4 95.0 94.1
1,000 94.1 94.2 93.1 93.3
R2: Same task set
0 94.7 95.5 94.5 93.4
400 953 94.5 93.9 95.5
1,000 96.7 95.5 95.6 96.1
R2: Different task set
0 93.9 89.4 91.4 88.9
400 94.5 85.9 91.9 88.3
1,000 92.3 89.8 93.4 93.1

Note. All numbers are percentages. R1 and R2 = Responses 1 and 2;
cong = congruent; incong = incongruent.

tally (SD = 0.69 degrees), while the mean size of the nonanimal pictures
was 3.6 degrees (SD = 0.75 degrees) X 3.1 degrees (SD = 0.81 degrees).
We fixed the distance between the bottom edge of the top picture or word

Table F2

Results of Analyses of Variance on Mean RT1, Mean RT2, and
Percentage of Correct Responses for the Form Judgment Tasks
of Experiment 3

Effect MSE df F
RT1
Task set (T) 347,541.34 1,15 12.61**
Form match (F) 4,186.51 1,15 24.55**
TXF 2,947.67 1,15 8.76**
Animacy match (A) 2,990.45 1,15 1.48
TXA 2,648.32 1,15 0.58
FXA 1,763.33 1,15 0.12
TXFXA 2,675.80 1,15 0.02
SOA (S) 60,334.92 2,30 2.46
TXS 30,319.73 2,30 1.83
FXS 7,143.39 2,30 4.03*
TXEXS 5,149.65 2,30 5.30*
AXS 4,152.22 2,30 0.50
TXAXS 4,700.14 2,30 0.29
FXAXS 2,141.03 2,30 - 016
TXFXAXS 1,336.17 2,30 0.04
RT2

Task set 811,616.53 1,15 29.50**
Form match 21,081.82 1,15 9.41%*
TXF 18,947.92 1,15 20.65**
Animacy match 12,832.29 1,15 0.02
TXA 13,992.50 1,15 0.05

F XA 11,389.38 1,15 5.98*
TXFXA 14,035.25 1,15 3.69
SOA 12,209.72 2,30 663.33%*
TXS 10,339.63 2,30 53.52%*
FXS 4,178.74 2,30 29.85%*
TXFEXS 7,041.53 2,30 3.12%
AXS 6,698.36 2,30 0.50
TXAXS 5,927.32 2,30 0.40
FXAXS 6,147.69 2,30 0.32
TXFEFXAXS 6,874.63 2,30 0.15

Accuracy

Task set 208.92 1,15 4,16
Form match : 25.31 1,15 0.40
TXF 37.23 1,15 1.63
Animacy match 12.52 1,15 2.40
TXA 10.55 1,15 0.12
FX A 6.53 1,15 0.20
TXFXA 7.13 1,15 0.66
SOA 51.18 2,30 2.38
TXS 24.34 2,30 1.31

F XS 19.66 2,30 0.66
TXFEXS 18.68 2,30 0.37
AXS 13.68 2,30 0.31
TXAXS 6.98 2,30 1.27
FXAXS 9.33 2,30 0.57
TXFXAXS 437 2,30 0.38

Nore. RT = reaction time; SOA = stimulus onset asynchrony.
*p <.05. *¥*p <0l

(Appendixes continue)
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Table F3

Accuracy for Rl and R2 in the Animacy Judgment Tasks of
Experiment 3 as a Function of Stimulus Onset Asynchrony
(SOA), Task Set, Form Congruence, and Animacy Congruence

Form cong Form incong
SOA Animacy Animacy Animacy Animacy
(ms) cong incong cong incong
R1: Same task set
0 95.3 94.8 94.8 90.9
400 95.8 95.6 94.5 94.5
1,000 96.3 95.5 95.2 95.6
R1: Different task set
0 95.0 94.4 93.3 92.8
400 96.7 95.6 94.2 944
1,000 95.9 94.7 95.5 97.0
» R2: Same task set
0 97.8 96.3 97.3 93.4
400 98.3 95.8 97.7 97.2
1,000 99.2 95.6 95.1 96.6
R2: Different task set
0 96.4 93.4 93.0 90.9
400 95.8 94.2 92.7 93.6
1,000 96.4 92.9 91.3 94.4

Note. All numbers are percentages. Rl and R2 = Response 1 and 2;
cong = congruent; incong = incongruent.

and the top edge of the bottom picture or word at 1.43 degrees. Thus, the
centers of words were 1.1 degree above or below the center of the screen
and the centers of pictures were 2.85 degrees above or below the center of
the screen. We were not concerned about the differences in eccentricity
between words and pictures because our analyses collapsed across words
and pictures.

Procedure

Each subject participated in four experimental sessions. Within a session
the basic design involved 48 trial types: animal or nonanimal for stimulus 1
(S1) X animal or nonanimal for S2 X picture or word for S1 X picture or
word for S2 X SOA (0, 400, 1,000 ms). Within a session, there were 12
replications of this design, for a total of 576 trials. The 576 trials were
divided into six blocks of 96 trials. Subjects were permitted to rest between
blocks. The first block in each session was considered practice, so first-
block data were not included in the analyses.

The task performed on each stimulus varied across sessions but re-
mained consistent within a session. There were four task combinations:
animacy or form judgments on S1 X animacy or form judgments on S2.
Two combinations involved the same task set (i.e., animacy-animacy and
form~form), and two involved different task sets (i.e., animacy—form and
form—animacy). The 96 pictures and 96 words were assigned randomly to
trials, except that an object and its name were never presented on the same
trial. Pictures and words occurred equally often across trials. No stimulus
was repeated within a block.

Each trial began with a fixation display that consisted of two horizontal
lines, one above the Sl location and one below the S2 location. The
fixation display was presented for 500 ms and then extinguished. If SOA
was 0, both S1 and S2 appeared immediately and remained on for 1,000

ms. If SOA was greater than 0, S1 was presented for SOA ms, whereupon
it was joined by S2, and both stimuli remained on for 1,000 ms. After 1,000
ms, the screen went blank (white). A 1,500-ms intertrial interval began
after subjects responded to both stimuli.

Subjects always responded to S1 with their right hand and to S2 with
their left hand. The mapping of keys onto stimuli was counterbalanced

Table F4

Results of Analyses of Variance on Mean RT1, Mean RT2, and
Percentage of Correct Responses for the Animacy Judgment
Tasks of Experiment 3

Effect MSE df F
RT1
Task set (T) 800,047.67 1,15 6.35*
Form match (F) 11,255.98 1,15 1.56
TXF 13,071.08 1,15 2.74
Animacy match (A) 7,221.08 1,15 2.59
TXA 13,319.23 1,15 2.02
FXA 12,081.33 1,15 3.61
TXEXA 7,885.64 1,15 3.36
SOA (S) 112,393.95 2,30 3.36*
TXS 17,424.63 2,30 0.87
FXS 3,379.56 2,30 3.05
TXFXS 4,921.83 2,30 0.23
AXS 5,094.54 2,30 2.99
TXAXS 8,677.42 2,30 0.45
FXAXS 4,889.62 2,30 1.05
TXFXAXS 5,172.06 2,30 0.01
RT2
Task set 501,597.13 1,15 9.00**
Form match 1,599.72 1,15 49.62%*
TXF 2,654.39 1,15 3.88
Animacy match 6,548.47 1,15 10.27%*
TXA 7,181.17 1,15 19.23%*
FXA 3,577.98 1,15 16.06**
TXFXA 3,864.51 1,15 0.76
SOA 16,407.39 2,30 460.87**
TXS 13,096.97 2,30 6.79**
FXS 5,374.91 2,30 0.84
TXFXS 5,674.39 2,30 1.17
AXS 6,052.61 2,30 7.06%*
TXAXS 3,487.07 2,30 1.59
FXAXS 2,622.00 2,30 1.40
TXFXAXS 2,246.84 2,30 1.04
Accuracy

Task set 336.72 1,15 0.00
Form match 11.11 1,15 9.85%*
TXF 9.17 1,15 0.45
Animacy match 6.84 1,15 4.20%
TXA 5.89 1,15 1.11
FXA 8.61 1,15 0.37
TXFXA 10.21 1,15 2.55
SOA 16.88 2,30 6.32%*
TXS 8.25 2,30 0.08
FXS 9.78 2,30 4.29*
TXFEXS 5.09 2,30 0.19
AXS 9.72 2,30 1.72
TXAXS 9.50 2,30 0.90
FXAXS 13.75 2,30 2.01
TXFXAXS 7.44 2,30 0.47

Note. RT = reaction time; SOA = stimulus onset asynchrony.
*p<.05. **p< .0l
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across subjects. For each task combination, there were four mappings.
When subjects made animacy judgments about both stimuli, the mappings
were ANAN, ANNA, NANA, and NAAN, where A refers to animal and N
to nonanimal, and the order refers to the four fingers used to respond: the
middle and index fingers of the left hand and the index and middle fingers
of the right hand, respectively. With form judgments on both stimuli, the
mappings were PWPW, PWWP, WPWP, and WPPW, where W refers to
word and P refers to picture. When subjects made animacy judgments on
S1 and form judgments on S2, the mappings were PWAN, PWNA, WPAN,
and WPNA; when they made form judgments on S1 and animacy judg-
ments on S2 the mappings were ANPW, ANWP, NAPW, and NAWP.

Design

Mean reaction times (RTs) and accuracy scores were analyzed sepa-
rately for each response (R1 and R2) and for each task (animacy and form
judgment) in 2 (task set: same or different) X 2 (form: congruent or
incongruent) X 2 (animacy: congruent or incongruent) X 3 (SOA: 0, 400,
or 1,000 ms) analyses of variance (ANOVAs).

Results
Form Task

The accuracy data from Experiment 3 are presented in Table F1. The
conclusions drawn in the text were supported by inferential statistics. The
ANOVAs on RT1, RT2, and accuracy scores are presented in Table F2. In
the RT1 ANOVA, only the theoretically relevant effects were significant.
There was a significant main effect of task set, indicating set-switching
cost. A significant main effect of form congruency and significant inter-
action between task set and form congruency indicated crosstalk that was
modulated by task set. Significant interactions between form congruency
and SOA, and among task set, form congruency, and SOA, indicated the
modulation of crosstalk by SOA in the same-task-set condition. The change
in the form congruency effect over SOA in the same-task-set condition was
assessed with Fisher’s least significant difference (LSD) test, using the
error term from the interaction among task set, form congruency, and SOA.
The LSD for p < .05 is 37 ms, indicating that the form congruency effect
was significant only at the 0-ms SOA.

In the RT2 ANOVA the significant effects supported our conclusions.
They included the main effect of task set, the main effect of form congru-
ency, the interaction between task set and form congruency, the main effect

of SOA, the interaction between SOA and form congruency, and the
interaction between task set and SOA. The only other significant effect was

.the interaction between form congruency and animacy congruency. The

form congruency effect was 113 ms when animacy was congruent and 106
ms when animacy was incongruent.

The change in the form congruency effect with SOA in the same-task-set
condition was assessed with Fisher’s LSD computed from the interaction
among task set, form congruency, and SOA. The LSD for p < .05 is 43 ms.
By this criterion, the form congruency effect was significant at the 0-ms
and the 400-ms SOA.

There were no effects in the ANOVA on the accuracy data that com-
promised our interpretation of the RTs.

Animacy Task

The accuracy data for the animacy task are presented in Table F3. We
assessed the support for the conclusions drawn in the text with inferential
statistics. The summary tables for the ANOVAs on the RT1, RT2, and
accuracy data are presented in Table F4. The RT1 ANOVA provided
mixed support for our conclusions. The main effect of task set was
significant, which confirms the set-switching costs, but the main effect of
animacy congruency was not significant, neither were any of the interac-
tion effects in which it participated. Undaunted, we carried out our planned
assessment of the animacy congruency effects at each SOA with Fisher’s
LSD calculated from the interaction among task set, animacy congruency,
and SOA. The LSD for p < .05 is 48 ms. By this criterion, the 71-ms effect
at the 0-ms SOA is significant.

The RT2 ANOVA was more supportive of our conclusions. Set-
switching cost was confirmed by the main effect of task set. Crosstalk and
the’ dependence of crosstalk on task set were supported by the main effect
of animacy, the interaction between animacy and task set, and the inter-
action between animacy and SOA. Fisher’s LSD computed from the
interaction among task set, animacy congruency, and SOA yielded an LSD
for p < .05 of 30 ms. By this criterion, the crosstalk effect was significant
at the O-ms and 400-ms SOAs in the same-task-set condition. The only
other remarkable effects were the main effect of form congruency and the
interaction between form congruency and animacy congruency. The ani-
macy congruency effect was larger when form was congruent (M = 94 ms)
than when it was incongruent (M = 35 ms).

There was nothing in the accuracy ANOVA that compromised the
interpretation of the RT1 and RT2 data.

Appendix G

Simulation of Logan and Schulkind (2000)

We returned to the two-dimensional stimuli used in our previous simu-
lations to simulate set switching and the modulation of crosstalk by task set
in Logan and Schulkind’s (2000) Experiment 2. The parameter values for
the same-task-set condition were the same as those used to simulate
Experiment 1. They are presented in Table C1. The parameter values for
the different-task-set condition are also presented in Table C1. Note that
the only difference between same-task-set and different-task-set conditions
is in the 3 parameters. In the same-task-set conditions, only one parameter
(7) had to be set before Task 1 and changed before Task 2. In the
different-task-set conditions, three parameters (2 8s and 1 ) had to be set
before Task 1 and changed before Task 2.

We used four stimulus onset asynchronies (SOAs): 0.0, 0.96, 2.88,
and 8.65 model units, which translated to 0, 100, 300 and 900 ms. We
simulated 10,000 trials with each of the 16 possible stimulus 1-stimulus 2
combinations at each SOA in the same-task-set condition and in the
different-task-set condition. The simulated accuracy data appear in Table
Gl1.

We set the SOAs by correlating simulated and observed reaction times
(RTs) at SOA = 0. That yielded r = .8839 and RT pereqa = 557 +
104(RT,;01aca)- The correlation between simulated and observed RTs over
all SOAs was r = .8937.

(Appendix continues)
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Table G1

LOGAN AND GORDON

Accuracy Data (Percentage Correct) for the Simulations of Experiment 3 as a Function of
Same- Versus Different-Task Set Conditions, Congruency, and Stimulus Onset Asynchrony (SOA)

R1 same set R2 same set R1 diff set R2 diff set
SOA
(ms) Cong Incong Cong Incong Cong Incong Cong Incong
0 99.9 97.7 99.9 91.9 99.8 99.7 99.9 99.5
100 99.8 98.8 99.9 91.7 99.8 99.8 99.9 99.5
300 99.8 99.5 99.9 91.8 99.8 99.8 99.9 99.5
900 99.8 99.8 99.9 91.8 99.8 99.8 99.9 99.5

Note. Rl and R2 = Responses 1 and 2; diff = different; Cong = congruent; Incong = incongruent.

Received June 23, 1999

Revision received July 5, 2000

Accepted August 1, 2000 =



